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ABSTRACT 
 

CO2 global emissions exceed 30 Giga tonnes (Gt) per year, and the high atmospheric 

concentrations are detrimental to the environment. In spite of efforts to decrease emissions by 

sequestration (carbon capture and storage) and repurposing (use in fine chemicals synthesis and 

oil extraction), more than 98% of CO2 generated is released to the atmosphere. With emissions 

expected to increase, transforming CO2 to chemicals of high demand could be an alternative to 

decrease its atmospheric concentration. Transportation fuels represent 26% of the global energy 

consumption, making it an ideal end product that could match the scale of CO2 generation. The 

long-term goal of the study is to transform CO2 to liquid fuels closing a synthetic carbon cycle. 

Synthetic fuels, such as diesel and gasoline, can be produced from syngas (a combination 

of CO and H2) by Fischer Tropsch synthesis or methanol synthesis, respectively. Methanol can 

be turned into gasoline by MTO technologies. Technologies to make renewable hydrogen are 

already in existence, but CO is almost exclusively generated from methane. Due to the high 

stability of the CO2 molecule, its transformation is very energy intensive. Therefore, the current 

challenge is developing technologies for the conversion of CO2 to CO with a low energy 

requirement. 

The work in this dissertation describes the development of a recyclable, isothermal, low-

temperature process for the conversion of CO2 to CO with high selectivity, called Reverse Water 

Gas Shift Chemical Looping (RWGS-CL). In this process, H2 is used to generate oxygen 

vacancies in a metal oxide bed. These vacancies then can be re-filled by one O atom from CO2, 

producing CO. Perovskites (ABO3) were used as the oxide material due to their high oxygen 
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mobility and stability. They were synthesized by the Pechini sol-gel synthesis, and characterized 

with X-ray diffraction and surface area measurements. Mass spectrometry was used to evaluate 

the reducibility and re-oxidation abilities of the materials with temperature-programmed 

reduction and oxidation experiments. Cycles of RWGS-CL were performed in a packed bed 

reactor to study CO production rates. 

Different metal compositions on the A and B site of the oxide were tested. In all the 

studies, La and Sr were used on the A site because their combination is known to enhance 

oxygen vacancies formation and CO2 adsorption on the perovskites. The RWGS-CL was first 

demonstrated in a non-isothermal process at 500 °C for the H2-reduction and 850 °C for the CO2 

conversion on a Co-based perovskite. This perovskite was too unstable for the H2 treatment. 

Addition of Fe to the perovskite enhanced its stability, and allowed for an isothermal and 

recyclable process at 550 °C with high selectivity towards CO. In an effort to decrease the 

operating temperature, Cu was incorporated to the structure. It was found that Cu addition 

inhibited CO formation and formed very unstable oxide materials.  

Preliminary studies show that application of this technology has the potential to 

significantly reduce CO2 emissions from captured flue gases (i.e. from power plants) or from 

concentrated CO2 (adsorbed from the atmosphere), while generating a high value chemical. This 

technology also has possible applications in space explorations, especially in environments like 

Mars atmosphere, which has high concentrations of atmospheric carbon dioxide.  
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CHAPTER 1: INTRODUCTION1 
 
 

1.1 CO2 Availability and Current Utilization 

Global carbon dioxide atmospheric concentration recently reached the 400 ppm 

threshold, putting the world at 1.5 °C above the average temperature prior to the industrial 

revolution. In 2012, 31.7 giga tonnes (Gt) of CO2 were emitted to the atmosphere [1], and 

emissions are expected to increase to 45 Gt/year by 2040, if this happens, it is foreseen that 

global temperature will increase 2 °C above pre-industrial times at which point the 

environmental changes would be almost irreversible. 

The rapidly increasing atmospheric CO2 concentration and the threat it poses upon the 

environment has led to increased efforts to reduce emissions. Amongst the most widely used 

approaches is Carbon Capture and Storage (CCS), more commonly called sequestration. 

According to the Global CCS Institute, sequestration is at a current estimated large projects 

capacity of 80 Mt CO2/year [2]. Furthermore, current CO2 utilizations for industrial processes 

such as ammonia synthesis, use in carbonated beverages, etc. does not exceed 130 Mt/year [3]. 

Production of CO2 is more than 150 times higher than its current and potential use or 

sequestration capability. Due to its large scale, a combination of methods and technologies at all 

levels of society, from industry to individual households, should be used if we are to 

significantly reduce CO2 emissions [2, 3]. 

Recently, a variety of technologies for repurposing the vastly available carbon dioxide 

into high value chemicals have emerged. To fulfill the ultimate resolution of environmental 
																																																								
1 This chapter will be submitted as part of a manuscript invited to RSC Advances 
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remediation, these technologies should be renewable, and the overall process needs to be carbon 

negative. If we consider the costs of CO2 transportation and storage (~$ 16.5/tonne CO2 [4]), 

developing technologies for Carbon Capture and Utilization (CCU) seem to make more sense 

than simply sequestering CO2. But the stability of the molecule is another challenge to overcome. 

CO2 is the most stable form of carbon, making its transformation very energy intensive.  

Technologies currently under research to transform CO2 to chemicals of wide use include 

synthesis of polymers [3], oxalates [5], formates [6], dimethyl ether [7], ethylene and propylene 

[8] and an interesting recently developed technology by Job et al. [9], that can recycle CO2 onto 

plastics similar to polyurethane (up to 50% CO2 by weight). But even at the high global demand 

for plastics (311 Mt), if all the plastic produced in the world was synthesized with this 

technology, we estimate that CO2 emissions wouldn’t decrease more than 0.05%. Similarly, if all 

the methanol [10] and chemicals (made from oil) [11] consumed globally were synthesized from 

CO2, emissions would not decrease by more than 0.26% and 4% respectively.  Still, the key 

factors of utilization remain an issue: (i) the need for concentrated CO2 [12, 13] and (ii) proven 

technologies for conversion that can match the scale of CO2 production, and produce chemicals 

of significantly high demand [12-15]. 

1.2 CO2 as a Resource for Liquid Hydrocarbon Fuel Production 

In a worldwide effort to increase environmental friendliness, the use of alternative 

renewable technologies (solar, wind, geothermal, nuclear, hydro…) have been steadily 

increasing, and have evolved from representing 2.8% of the world energy production in 1973 to 

8.3% in 2012 [1]. The limitation is that these renewable energy sources are mostly used to make 

electricity, and in 2012, electricity only represented 18.1% of the global energy consumption. 

From this percentage, 67.9% of electricity was produced by fossil fuels [1]. This is likely the 
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biggest window for growth that renewable energy has on the world energy consumption. The 

challenge for alternate renewable energy sources is that energy can’t be efficiently stored. Solar, 

wind, tide… do not constantly produce energy and go through peaks where the energy produced 

is likely wasted. 

The last statement describes clearly why fossil fuels are still necessary. Oil represents 

40.7% of world energy consumption, and 63.7% of total oil products were used to make 

transportation fuels [1]. The demand for fuels is at least 100 times larger than chemicals [16]. 

Furthermore, only liquid fuel demand matches the scale of CO2 production [13, 17, 18].  

So far, no other type of fuel has been able to outrank the practicality of liquid fuels, 

therefore energy dense fuels are still necessary [19, 20], and unless renewables are used to make 

energy dense fuels, the world will continue to depend on liquid fossil fuels. 

As an alternative, synthetic liquid hydrocarbon fuels with high energy density have been 

synthesized and studied [21]. So this excess energy could be stored in the form of liquid fuels to 

be used when needed. But converting CO2 to fuels poses another crucial problem, the need for 

renewable hydrogen [22-27], which is still a technology in development [28]. 

1.3 Green Technologies for CO2 Conversion to Fuels with Large Demand 

The technologies that are focused on converting CO2 to fuels are limited to (1) syngas 

synthesis from methane dry reforming (DR), (2) direct hydrogenation of CO2 to methanol and 

(3) RWGS reaction. Electrochemical reduction of CO2 is currently not a viable way to reduce 

emissions because the scale of conversion would be much lower than RWGS [29]. 

Methane is a relatively abundant chemical, in 2013 its global production was 3479 billion 

m3 [1], which is equivalent, in moles, to ~20% of CO2 yearly emissions. Due to its scale of 

production, methane is the chemical with the highest potential for CO2 conversion. DR is an 
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endothermic reaction [10], favored at high temperatures, at which catalysts sinter and coke [19] 

and deactivate due to high sulfur levels [10]. Low temperature DR has been reported (430–

470 °C) with no coking, but using an assembly of noble and transition metal catalysts combined 

with metal oxides (Pt–Ni–Mg/ceria–zirconia catalysts [30]) which have yet not been studied for 

poisoning.  

Direct CO2 hydrogenation is more thermodynamically favored than RWGS. Therefore, it 

was considered promising for industrialized methanol synthesis [31] and has been demonstrated 

industrially in Iceland by George Olah and Surya Prakash. However, the CAMERE process 

revealed 20% higher methanol yields when CO2 is converted to CO (through RWGS), and CO to 

methanol, rather than directly hydrogenating CO2 [23]. 

The RWGS is an endothermic reaction, favored at high temperatures [26]. The most 

commonly studied catalyst are copper based [32-35], or supported ceria [36-38], potentially less 

expensive than those used in DR. Its biggest advantage is the formation of CO, which can be 

used as a building block for a variety of important chemicals, such as hydrocarbons in Fischer-

Tropsch synthesis, fine chemicals synthesis or the purification of nickel. 

RWGS is also suspected to be a key step in selective methanation of CO2 [39] and it is 

also suspected to occur in FT reactors with high CO2 feeds [18, 40]. It becomes evident that 

RWGS is a key step that should be considered and fully understood. 

1.4 Rationale for RWGS Catalysis Over Competing Technologies 

The reverse water gas shift reaction was first patented by Carl Bosch and Wilhelm Wild 

in 1914 H2 [41]. It was used as a way of avoiding the separation of CO from H2 + CO mixtures, 

while having the added advantage of making extra H2 [41]. Currently, it is important in the 
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synthesis of methanol [13], ammonia, and in fixing syngas’ H2/CO ratio for Fischer-Tropsch 

feeds. 

Taking CO2 as the starting point, Mallapragada et al. [42] studied different routes to 

transform CO2 into liquid fuels using solar assisted processes. The method is called “Sun-to-

Fuels”. The importance of using Solar-aided processes is due to the need for green renewable 

energy, with an overall carbon negative process. Mallapragada et al. [42] determined that solar-

assisted conversion of CO2 to CO by reverse water gas shift reaction followed by CO conversion 

to fuels with FTS has the highest current and estimated potential efficiency. Furthermore, 

converting CO2 to CO gives an added versatility in the products that can be obtained from CO 

transformation [11]. RWGS is also of great interest to be used in Mars due to its high (~95%) 

CO2 atmospheric concentration [43, 44]. Therefore, RWGS is a promising reaction, whose 

products have a wide variety of potential end uses. 

1.5 Intensified RWGS 

The first attempts to achieve an intensified RWGS process emerged from combining 

chemical looping with DR, but substituting CH4 by H2 due to its higher potential as a reducing 

agent. In a chemical looping process, the ability of the oxygen carrier to reduce and oxidize 

under the desired environments in a key factor that can determine the feasibility of the process. 

In the combined RWGS process with chemical looping, a metal oxide is used as an oxygen 

carrier. First, H2 is used to reduce the metal oxide, followed by CO2 flow which is serves as an 

oxidant, returning the metal oxide to an oxidized state while CO is formed. The main advantages 

of an intensified RWGS – chemical looping process (RWGS-CL) are eliminating the possibility 

of methanation because the H2 and CO2 flow are always kept separate, and inherent product 

separation [45-47]. 
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Thermodynamic modeling and experimental screening of transition metal oxides showed 

that Fe-based materials had one of the best CO2 carrying capacities while having the ability to 

function in the widest variety of temperatures [48, 49]. Najera et al. [48] observed signs of 

stability on a 40% w/w Fe-BHA (Barium Hexaaluminate) porous sample on the intensified 

RWGS process over 6 reaction cycles. Adding ceria to iron oxide (CeO2−Fe2O3) linearly 

enhanced the stability of the solid solution, but decreased the CO formation capabilities [50]. 

1.5.1 Reverse Water Gas Shift Chemical Looping 

A formal RWGS-CL process was demonstrated on La(1-X)SrXCoO3 perovskite oxides by 

Daza et al. [45], but amongst the studied temperatures, the H2 reduction and CO2 conversion 

happened with at least 50 °C difference, so the process was not isothermal. 

Reduced Fe-based spinels had been used previously for CO2 decomposition to C(s) and 

O2(g) at 300 °C [51, 52]. Based on these results, the RWGS-CL process was intensified on a 

La0.75Sr0.25FeO3, and was demonstrated under isothermal conditions at 550 °C [46]. By 

substituting cobalt with iron, the reducibility of the material was significantly decreased and it 

did not decomposed under H2 flow.  

 However, the process was not fully stoichiometric, because even though oxygen 

vacancies were being created, not all of the vacancies were re-filled. DFT suggested that the 

driving force for the CO2 bond cleavage was the increased CO2 adsorption strength amongst the 

vacancies extent tested. RWGS was tested on La0.75Sr0.25Fe(1-Y)CuYO3, but doping Cu into the B 

site of the perovskite highly increased its reducibility and inhibited CO formation [47]. 

CO formation was achieved on both cobalt- and iron-based perovskites at similar reaction 

conditions, but the different solid state reactions the oxides underwent suggest very different 

reaction pathways. The high reducibility of the Co-based perovskite [45] lead to its reduction to 
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base La2O3 and metallic Co. It is likely that CO2 then adsorbed in the basic lanthanum oxide or 

lanthanum-based Ruddlesden Popper phase and dissociated in the metallic cobalt, turning the 

metal into cobalt oxide (CoO) while yielding CO. On the iron based material, a surface redox 

mechanism between oxygen vacancies in the perovskite took place, where the CO2 was adsorbed 

likely on a lanthanum and Oxygen surface termination [53] close to an oxygen vacancy, then 

CO2 can dissociate into CO and a O adatom that re-fills the said oxygen vacancy [46]. 

Introducing Cu into the Fe-based perovskite increases the stability of the perovskite in its 

reduced state (after forming oxygen vacancies), therefore reducing its oxygen affinity and re-

oxidation capabilities, therefore the observed outcome was a suppression of CO production 

because CO2 was not able to re-oxidized the reduced oxide [47]. 

Throughout the different studies with an intensified version of the conventional RWGS 

reaction, it is noteworthy that the best results were achieved with Fe-containing solid solutions. 

Even though it has been shown before that Fe-oxides can decompose CO2 to C(s) and O2 [51, 

52], Fe-based oxides show the highest CO formation. Only one study has tested selectivity 

towards CO (vs. C(s)) and the process is 30 times more selective towards CO [46]. It is also 

curious that even though Cu is widely used to catalyzed forward and reverse water gas shift, Fe 

is best for the intensified process. 
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Figure 1.1 Pictorial representation of the intensified reverse water gas shift (RWGS-CL) process. 
Modified from [45]. 
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CHAPTER 2: MATERIALS AND METHODS 
 
 

2.1 Perovskite Oxides 

Perovskite oxides are mixed metal oxides of the general formula ABO3. Where the A site 

metal is larger than the one occupying the B site [54-56]. Each site can be partially substituted to 

obtain a particular set of desired properties (magnetic, electrical, optical…) in each material [56-

58]. Due to this ability to be tailored, a wide variety of uses can be given to these materials. They 

can be used as cathodes [59] and anodes [60] for solid oxide fuel cells and they have been 

studied in combustion reactions [61-64] due to their high oxygen exchange abilities. And they 

have been studied for NOx reduction [57, 65-67] for applications mostly in catalytic converters. 

The Ruddlesden Popper phase, An-1A’2BnX3n+1 where A and A’ can be different 

lanthanides or rare earth metals, B is a smaller transition metal, X is an anion and n is the number 

of octahedral layers in the perovskite-like stack [68] are also of interest due to their higher 

oxygen surface exchange rates, when compared to typical ABO3. They were first demonstrated 

by Ruddlesdden and Popper in 1957 for n=1 materials [69]. For the n=1 (A2BO4), the oxides 

exhibit a K2NiF4 type structure [69] composed from a perovskite stacked with a rock salt (AO) 

and present a tetragonal crystalline structure [70]. Similarly to ABO3, they can also be 

customized by partial substitution of the A and B site metals [71]. The difference in both phases 

can be observed in Figure 2.1.  

When perovskites are heated in an inert or reducing environment, oxygen vacancies are 

formed in their structure [65, 72, 73]. The amount of oxygen vacancies formed depends on four 
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conditions: temperature, environment (low oxygen partial pressure or reducing agent used), size 

and valence of the cations on the A and B site [56, 74] and, under certain conditions, time spent 

under the reducing conditions [47, 75]. 

In an oxygen deficient environment, oxygen can be released from the structure upon 

heating, in an endothermic process [76]. Under a reducing environment (such as H2), the 

reduction profiles are dependent on the A and B site metals, and for a given B site metal, the 

extent of reduction has been found to increase with decreasing the ionic radius of the A site 

metal [77]. Typically, perovskites exhibit two reduction regions (as will be explained in 

temperature-programmed reduction experiments in later chapters). The first (low-temperature) 

region typically demonstrate the change in oxidation state of the B site metal, and the formation 

of oxygen vacancies [78], whereas the second (high temperature) region correlates to a phase 

change in the perovskite [63, 78], which can sometimes be reversible, upon O2 flow. 

2.1.1 Effect of Different Metals on the Properties of the Perovskite Oxides 

The use of Ln (lanthanides) and Me (transition metals) is of great interest because of the 

wide variety of properties that can be achieved in the perovskite. They can have magnetic, 

electrical and catalytic properties depending on the substitution of A and B site of the material 

[79]. Cu- based materials are well known to be superconductors [80, 81], Fe- based are magnetic 

[82] while Co-based exhibit different magnetic and conductive properties with high dependence 

on the temperature [83] 

La-based perovskites have strong basic sites which enhances CO2 adsorption [84]. The 

combination of La-Sr in the A site and Co in the B site has been studied for its anionic vacancy 

formation capabilities [85, 86]. Also, this combination its believed to enhance the oxygen 

vacancies formation because of the partial substitution of Sr2+ in the A site, which creates a 
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charge unbalance that is stabilized by a coexistence of Co3+ and Co4+ [58, 74, 85, 87] in the oxide 

powders. Adding Fe to the Co-based perovskite enhances the stability of the crystalline structure 

[56, 88, 89]. Doping low amounts of Cu into the B site of La-based perovskites increases 

reducibility [90], which has been found favorable in redox reactions [91]. But high incorporation 

of Cu induces phase changes and appearance of several distinct phases and only Cu on the B site 

is unstable [90].  

2.1.2 Redox Reactions on Perovskite Oxides 

In general, the formation of oxygen vacancies on the oxides with a reducing agent, in this 

case hydrogen, can be represented by the reaction below: 

!"#$ 	+	'	() → !"#$+, + '	()#                                                                                          (2.1) 

whereas the re-oxidation of the reduced material with CO2 can be expressed by:  

!"#$+, 	+	'	-#) → !"#$ + '	-#                                                                                          (2.2) 

where the enthalpy of the oxygen vacancy formation (I) and re-oxidation with CO2 (II) reactions 

is given by: 

∆(/01234567
° = ∆(:;<=>?

° + 	δ∆(AB<
° − ∆(:;<=

° − δ∆(AB
°                                                          (2.3) 

∆(6D51E4567
° = ∆(:;<=

° + δ∆(F<
° − ∆(:;<=>?

° + 	δ∆(F<B
°                                                          (2.4) 

respectively. 

The formation energies of the oxygen vacant materials will depend on the metals’ 

composition on the A and B site of the perovskite, the extent of oxygen vacancies (δ) formed 

during the H2-reduction and the amount of oxygen vacancies that can be re-oxidized with CO2 

[92, 93]. To perform accurate calculations, the aforementioned material properties should be 

considered. For the RWGS-CL, because reactions (2.1) and (2.2) can take place at the same 



www.manaraa.com

	

	12 

temperature for the La0.75Sr0.25FeO3, we will neglect the temperature effects for this material. 

Also, δ = 0.125 will be assumed for the calculations in both reactions. 

Then, using the ∆(G6/HE4567
° IJK.MNOPK.)NQR#$ = 	−146.44	

VW
XYZ  [94] and 

∆(G6/HE4567
° IJK.MNOPK.)NQR#$+K.[)N = 	−426.77	

VW
XYZ [94], we can calculate equations (2.3) 

and (2.4), respectively: 

∆(/01234567
° = ∆(^E_.`ab/_.Bac0<=>_.dBa

° + 	0.125	∆(AB<
° − ∆(^E_.`ab/_.Bac0<=

° − 0.125	∆(AB
°

= −310.56VW XYZ	 

∆(6D51E4567
° = ∆(^E_.`ab/_.Bac0<=

° + 0.125	∆(F<
° − ∆(^E_.`ab/_.Bac0<=>_.dBa

° + 	0.125	∆(F<B
°

= 315.70	 VW XYZ	 

then, the formation of oxygen vacancies (2.3) is exothermic, while the re-oxidation of the 

material (2.4) is endothermic. 

Simplistic scenarios such as adding the two reactions together (canceling the enthalpies 

of the oxides), leads to the conventional reverse water gas shift reaction, with a ∆(/0E34567° =

41.18	 VW XYZ	.  

Other simplifications, such as neglecting the solid state enthalpies (i.e. ∆(:;<= ≈

∆(:;<=>?, would lead to: 

∆(/01234567
° = 	 '	∆(AB<

° = −30.23	 VW XYZ	 

∆(6D51E4567
° = −'	∆(F<

° +	'	∆(F<B
° = −13.81	 VW XYZ + 49.19	

VW
XYZ = 35.38	 VW XYZ 

Then, ∆(/01234567°  (2.3) would still be exothermic, and ∆(6D51E4567°  (2.4) still endothermic, but 

the energies are at least one order of magnitude off. This confirms that for accurate calculations, 

the solid state enthalpies can’t be neglected. 
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2.1.3 Synthesis of Perovskite Oxides by Sol-Gel Methods 

Different methods have been developed for the synthesis of these types of materials. The 

most common are amorphous citrate [95], freeze drying [96] and sol-gel-based synthesis [97], 

but alternative methods like electrochemical synthesis [98], using activated cellulose [99] and 

combustion synthesis [100] have also been developed.  

In Gelation or sol-gel synthesis, a solution with the dissolved metal precursors is turned 

into a hydrated solid (hydro-gel), which can be easily combusted to finally form the desired 

product. This process posses the advantage of allowing a high control of texture, composition, 

homogeneity and structural properties of the end products. The homogeneity of the gel is highly 

dependent on the solubility of the metal precursors, therefore some studies have stabilized the pH 

of the samples to have an increased solubility of the metal precursors [101]. 

A point that usually remains common between all the synthesis methods is that previous 

to the synthesis, the desired molar ratios of the cations in the perovskite need to be determined 

and added accordingly.  

2.1.3.1 Introduction to the Pechini Synthesis Method. The Pechini method, also called 

the polymeric precursor method [79], is the most commonly used form of solid-state synthesis 

[78]. It uses a carboxylic acid (citric acid) as a chelating agent in an aqueous medium to dissolve 

the salt precursors thus granting homogeneity to the dispersion of the cations in the solution [78, 

79]. The disperse cations are immobilized in a polymeric resin that is formed by the reaction 

between the acid and added ethylene glycol [78, 79]. The easiness of decomposition of the 

formed resin reduces the possibility of carbon contamination on the final product [101]. 

The Pechini method has the advantage of allowing a precise stoichiometry control of the 

product, homogeneity in the metal dispersion and high reproducibility over other methods used 
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for synthesizing perovskites [79]. Furthermore, this method usually yields single phase materials, 

which are desired because secondary phases can decrease the required properties [79].  

2.1.3.2 Experimental Procedure for the Pechini Synthesis Method. In this work, the 

Pechini method as described by Popa and Kakihana [97], with a modification of the cations ratio 

as described by Ivanova et al. [78] was chosen to synthesize the perovskite powders (Figure 2.2).  

First, the carbonates and/or nitrate precursors are carefully weighted and the molar ratios 

of metal precursors to citric acid are carefully controlled. Then, the precursors are added to an 

aqueous solution of citric acid, which is kept under magnetic stirring at 60°C for 2 h to enhance 

the solubility of the precursors (Figure 2.2 a). Typically, for a ABO3 perovskite, the molar ratios 

are 1:1:10 [78] for A site: B site: Citric acid, however, the ratio of metals to citric acid may vary 

depending on the solubility of the metal precursors in the citric acid aqueous solution. 

Next ethylene glycol is added to react with citric acid forming a polymer (Figure 2.2 b) 

which immobilizes the cations in the solution [78]. The ratio of citric acid to ethylene glycol is 

often kept at 1:4 [78, 97]. The temperature of the solution is then increased to 90°C to evaporate 

the water and to make the polymer more viscous. After 7 h of heating, a highly viscous resin is 

obtained (Figure 2.2 b). The resin is then decanted to a crucible (Figure 2.2 c) for the heating 

treatments. The first heating is performed for 2 h at 450°C to remove most of the organic 

polymer, resulting in an amorphous powder (Figure 2.2 d). At this point, a small amount of the 

powder was separated from the main batch to perform a temperature-programmed oxidation with 

20% O2 (He balance) to determine the crystallization temperature of the specific material (Figure 

2.3). In this experiment, at a temperature usually above 700 °C, oxygen is consumed and carbon 

dioxide is formed due to a combustion reaction, which correlates to the formation of the 

crystalline powder. The existence of a range (instead of a set temperature) for the second heating, 
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is due to the dependence of the metal ions on the crystallization temperature, that is, the 

temperature at which the powders form a crystalline structure [97]. Evolution of the crystalline 

during the last step of the synthesis has been observed [88], therefore homogeneity of the 

conditions needs to kept to ensure repeatability of the synthesis. 

This powder is cooled and crushed before proceeding to the second heating, where 

charring (between 600°C and 900°C) in air is performed to form the crystalline powder (Figure 

2.2 e). The obtained solid color is highly dependent on the metals added. 

2.2 Characterization Techniques 

Characterization methods used to study the perovskite oxides will be briefly discussed; 

in-depth information can be found on each of the subsequent chapters, 

2.2.1 Gas Sorption 

Surface area measurements were performed in a Quantachrome Autosorb IQ with N2 as 

the adsorbant at 77 K. Prior to the measurements, the samples were outgassed usually at T >100 

°C to ensure water is removed from the porous and surface. Only partial pressures between 0.05 

and 0.3 were considered for the calculations. The The BET (Brunauer-Emmett-Teller) method 

[102] was used to calculate the surface area of the powders. This method considers both 

multilayer and monolayer adsorption. 

2.2.2 X-Ray Diffraction 

X-ray diffraction (XRD) was used as the main method for determination of the crystalline 

structures. Three different devices were used to obtain the patterns showed in this dissertation. In 

chapter 3, a Phillips X-Ray and a Bruker D8 Diffractometers were used to collect the patterns at 

isothermal and temperature-programmed conditions respectively. Both devices had a CuKα (λ = 



www.manaraa.com

	

	16 

0.154 nm) but different step sizes were used in each set up. In chapters 4 and 5, a Bruker X-Ray 

Diffractometer was used, also with a Cu Kα (λ = 0.154 nm) source and a step size of 0.0102 2θ°. 

Almost the entirety of the X-ray diffraction patterns in this dissertation have been 

identified and their lattice parameters have been calculated using an iterative method with 

Bragg’s Law. 

kl = 2mnokp                                                                                                                              (2.5) 

where k is a positive integer (assumed 1), l is the wavelength of the radiation source, m is the 

lattice distance and p  is the incidence angle. And the lattice geometry equations for each 

symmetry system, obtained from reference [103] and are further explained in Appendix B-1, i.e. 

the cubic system relation: 

m = E

qBrsBrtB
                                                                                                                             (2.6) 

where J is the cubic lattice parameter and ℎvZ the Miller indices of the Bragg plane. Bragg’s law 

is used to obtain the experimental m values of the diffraction lines in the obtained pattern. Then, 

ℎvZ values are assumed and introduced into the crystallographic relation, until a calculated d 

value matches the experimental m value with a minimum error. 

2.2.3 Mass Spectrometry 

In mass spectrometry (MS) technique, electrons bombard different gases, breaking the 

molecules into fragments. These fragments can be analyzed to determine the molecular weight of 

the original gas molecule, and different functional groups can be identified [104]. 

Figure 2.4 shows the experimental set up for all MS studies. Different gases are 

connected to the reactor inlet and their flow rates (in standard cubic centimeters) regulated by 

mass flow controllers. The simulation of the packed bed reactors is done by immobilizing ~75mg 

of powders between glass wool (Figure 2.5). This glass wool is unreactive and non-porous.  
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All quantifications of MS patterns were performed by a procedure found on Appendix B-

3. In summary, CO2, CO, H2, H2O and O2 were quantified was quantified using m/z=44, 28, 2, 

18 and 32 respectively. In the first step, all baselines are removed, next, the contribution of CO2 

was subtracted from the m/z=28 signal (usually ~11% of m/z=44). Ideal gas law was used for 

calculating the molar flow rates, and the trapezoidal rule was used for calculating the areas under 

the curves for the different species. 
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Figure 2.1 Materials. (left) ABO3 perovskite and (right) Ruddlesden-Popper with n=1 layered 
perovskite. 
 
 
 

 
Figure 2.2 Different steps in the powders synthesis. 4.a) Citric acid aqueous solution with the 
cations. 4.b) Resin formed by ethylene glycol addition. 4.c) Resin transfer to the calcination 
ceramic recipient. 4.d) Porous powder obtained after heating at 450°C. 4.e) Perovskite powder. 
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Figure 2.3 TPO profile of uncharred SrCoO3 to determine the optimal charring temperature. 
Oxygen (m/z=32) and carbon dioxide (m/z=44) signals recorded. The arrows show the formation 
of the crystalline structure. 
 
 

 
 

Figure 2.4 Mass spectrometer reaction set up. From left to right: mass flow controllers, furnace 
with U-tube reactor, Mass Spectrometer, computer. 
 
 

 
 

Figure 2.5 U-tube reactor packed with perovskite immobilized between glass wool 
  



www.manaraa.com

	

	20 

 
 
 
 
 

CHAPTER 3: CARBON DIOXIDE CONVERSION BY REVERSE WATER GAS SHIFT 

CHEMICAL LOOPING ON PEROVSKITE-TYPE OXIDES2 

 

3.1 Introduction 

More than 30,000 Mt of CO2 were released to the atmosphere in 2011, almost entirely 

due to burning coal, natural gas, and oil [105]. Yet, only around 140 Mt of these emissions are 

re-utilized annually as a feed for the production of fine chemicals such as urea and salicylic 

acid.[3] As a result, technologies for carbon capture and storage (CCS) are being developed to 

bridge the gap between CO2 emissions and its conversion. The sequestration capacity of the 

presently active projects is under 40 Mt per year [106]. An analysis of these values reveals that 

the conversion of CO2 to high production volume chemicals such as hydrocarbon fuels or 

methanol [107] becomes evident to significantly impact CO2 emissions. In 2011, the world 

produced and consumed 4142 Mt of oil, from which more than 60% was for fuel production 

[105]. Ideally, if CO2 could be transformed to fuels, a synthetic carbon loop could be closed with 

a feed that is both readily available and inexpensive [16, 108]. With these fuels, the carbon from 

CO2 would provide the backbone for energy-dense liquid fuels required for transport needs in the 

foreseeable future. 

Currently, the transformation of carbon dioxide to hydrocarbon fuels can occur by three 

main approaches. Thermochemical conversion yields high rates of CO production [109-112] and 

																																																								
2 Reprinted with permission from Y. A. Daza, R. A. Kent, M. M. Yung, and J. N. Kuhn. Carbon dioxide 
conversion by reverse water gas shift chemical looping on perovskite-type oxides. Industrial & 
Engineering Chemistry Research 2014, 53, 5828-5837. Copyright © 2014, American Chemical Society.  
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oxygen is simultaneously produced. Still, the high temperatures (1400 to 1600 °C) [109, 111-

114] lead to energy intensive processes and infrastructure for solar concentrators results in large 

capital expenditures [115]. Photo-electro-catalysis systems are limited by low reaction rates, 

poor reaction selectivity, the inability to use a wide spectrum of visible light, and the need for 

continuous sources of sustainable electricity [116-118]. Finally, carbon dioxide hydrogenation 

through RWGS forms carbon monoxide and water, [16, 26] then hydrogen can be added to 

carbon monoxide to form methanol or liquid hydrocarbons by Fischer-Tropsch synthesis (FTS). 

Preliminary techno-economic analyses [115, 119] demonstrate cost competitiveness for methanol 

and diesel production as compared to other renewable options. Although RWGS is the most 

established of the three, it is an equilibrium-limited endothermic reaction that is favored at high 

temperatures. In some cases, the products must be removed to shift the equilibrium towards the 

RWGS rather than the forward WGS [16]. In addition, common catalysts (copper-, iron- or ceria-

based systems) have poor thermal stability, and methane is commonly formed as an undesired 

side product [16, 26]. In spite of these drawbacks, Mallapragada et al. [42] determined that 

thermochemical conversion of CO2 to liquid hydrocarbon fuels, with RWGS in a solar-heated 

reactor as a key step, was more (sun-to-fuel; STF) efficient and had the highest future estimated 

efficiency as compared to similar processes using land-based biomass, photosynthesis, and 

algae-based biomass. This comparison is based on hydrogen obtained by commercial 

electrolyzers operating with solar efficiencies of 10%. For these reasons, the thermochemical 

CO2 conversion and specifically RWGS conversion are promising approaches for near-term 

implementation.  

In this study, the reverse water gas shift reaction with chemical looping cycles (RWGS-

CL) for the intensified conversion of carbon dioxide is presented. A scheme of the proposed 
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process is depicted in Figure 3.1. First, carbon dioxide is captured from its emissions source or 

separated from air and purified. The RWGS-CL operation converts CO2 and H2 to separate 

streams of CO and water. The water can be recycled, potentially to a sustainable hydrogen 

production system. The CO is combined with additional H2 for liquid fuel production via FTS or 

methanol synthesis. These separate product streams eliminate the possibility of methanation as a 

side reaction because there is no direct interaction between CO2 and H2 and aid in avoiding 

thermodynamic limitations. 

Here, a thorough study of the optimum composition of Co-based perovskite-type oxides 

(La1-XSrXCoO3-δ) and conditions for the RWGS-CL are presented. These oxides are represented 

by an ABO3 formula, where the A-site is typically occupied by lanthanides or alkaline earth 

metals, and the B-site is usually filled with transition metals [54-56]. With multiple cations 

combinations possible on each site, perovskite-type oxides can be easily customized to achieve 

desired properties like high oxygen mobility [56, 58]. These materials remain stable at high 

temperatures without aggregation, which makes them ideal for the proposed process because 

they can be used at the high temperatures required to achieve conversion of the stable CO2 

molecule. 

The combination of La and Sr in the A-site and Co in the B-site enhances formation of 

oxygen vacancies [85, 86]. The difference in the La and Sr oxidation states generates a charge 

imbalance in the ABO3 structure, which is stabilized by inducing some of the Co3+ ions to 

coexist as Co4+ [58, 74, 85, 87]. As the Sr substitution in the A-site increases, so does the amount 

of Co4+ and the reducibility of the oxide in reducing conditions [56]. Aside from the cations on 

the A-and B-site, temperature and environment [65, 72-75], are factors that affect the reducibility 

of the oxides.  
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With high oxygen mobility and tunability, perovskite-type oxides have potential to be 

useful for a variety of chemical looping processes [120-122]. With CO2 being a stable molecule 

and acidic, basic surface sites should enhance adsorption. The surface basicity of perovskite-type 

oxides has been described [56]. As a result, these materials would be expected to have better 

performance for chemical looping involving CO2 conversion, than traditional metal/metal oxide 

pairs used (such as Fe/Fe2O3). In studies focused on chemical looping dry reforming, [49, 123] 

CO2 was found not to be a strong oxidant for iron nanoparticles, iron oxides and iron silicates 

and carbon formation during the reduction of CO2 was observed [49, 123]. 

The current study targets the use of parent perovskite-type oxides (ABO3-δ) and layered 

perovskite structures (AA’BO4-σ) [71] for the conversion of carbon dioxide to carbon monoxide. 

The schematic representation of the process is shown in Figure 3.2. When H2 is flowed through 

the perovskite-type oxides, the oxides change phases to metallic cobalt and base oxides, which 

are re-oxidized back to a layered perovskite with a K2NiF4-type structure when exposed to CO2, 

and as a consequence, CO is produced.  

3.2 Experimental Procedure 

All gas purities are ≥99.99%. The temperature ramp rate used was 10°C/min and the total 

gas flow rates were held constant at 50 SCCM unless otherwise stated. 

3.2.1 Synthesis of Oxide Powders La1-XSrXCoO3-δ 

Following the synthesis procedure presented by Popa and Kakihana [97], La(NO3)3 

(Aldrich, purity 99.9%), SrCO3 (Alfa Aesar, purity 99.994%) and CoCO3 (Aldrich, Co 43-47%) 

were dissolved in an aqueous solution of citric acid (Aldrich, ACS grade ≥99.5%) at 60 °C and 

stirred at the same temperature for 2 h. Then, ethylene glycol (Aldrich, Reagent Plus ≥99%) was 
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added while stirring at 90 °C for 12 h. The compounds ratios used (A-site : B-site : citric acid : 

ethylene glycol = 1:1:10:40) were chosen in accordance with Ivanova et al. [78] 

After the polymerization occurred, the sample was heated in air from room temperature 

until 450 °C at a ramp rate of 25 °C/min and was held at this temperature for 2 h. After cooling, 

the powders were slightly crushed. Next, a TPO-O2 with 20% O2/He was performed to the 

samples with Sr content of X=0 and X=1 to determine their optimal charring temperature. 

Following, samples with a Sr content of 0≤X≤0.75 were charred in air by heating from room 

temperature to 700 °C at a ramp rate of 25 °C/min and were held at this temperature for 6 h, 

whereas the sample with X=1 was charred in air by heating from room temperature to 750 °C 

under the same conditions.  

3.2.2 XRD 

X-Ray Diffraction was performed in a Phillips X-Ray Diffractometer with a CuKα (λ = 

0.154 nm) using a step size of 0.02° at room temperature for all the fresh samples (after charring) 

La1-XSrXCoO3 (0≤X≤1) and for La0.75Sr0.25CoO3 after a H2-reduction (10% H2/He for 30 min at 

500 °C) and isothermal CO2 conversion (10% CO2/He at 850 °C). 

3.2.3 BET Surface Area 

BET surface area studies were performed in a Gas Sorption System Autosorb iQ 

Quantachrome on the fresh samples and after a H2-reduction (10% H2/He for 30 min at 600 °C) 

and isothermal CO2 conversion (10% CO2/He for 30 min at 850 °C).  

3.2.4 Temperature-Programmed Reduction (TPR) 

TPR experiments were performed with a thermal conductivity detector in a Gas Sorption 

System Autosorb iQ Quantachrome. The feed gas was a mixture of 5% H2/N2. The temperature 

was increased from room temperature to 800 °C where it was held for 30 min. 
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3.2.5 Temperature-Programmed Oxidation with CO2 (TPO-CO2) 

TPO-CO2 experiments were performed in a lab-scale reactor system with multiple mass 

flow controllers (Alicat) and a MKS Cirrus mass spectrometer for gas-phase analysis (described 

elsewhere in more detail).[124, 125] The species (m/z) monitored for each gas-phase molecule 

are the same as described in more detail in the isothermal conversion studies. Each sample was 

reduced in 10% H2/He from room temperature to 600 °C and was held for 30 min. Next, the 

sample was cooled to 100 °C in He. Later, 10% CO2/He was flowed to the sample while 

undergoing heating up to 850 °C and was held at that temperature for 30 min. 

3.2.6 Isothermal CO2 Conversion 

After an isothermal pretreatment (at either 400, 500, or 600 °C) under 10% H2/He for 30 

min, the powders re-oxidation was studied in the reactor system described in the previous 

section. The reactor temperature was ramped up at a rate of 10 °C/min in He flow to specified 

temperatures (650, 750 and 850 °C). After the m/z signals were stable at the desired temperature, 

the reaction environment was changed to 10% CO2/He and was held until the carbon monoxide 

generation signal (m/z=28) was no longer observed. CO production was quantified with the 

fragmentation patterns of m/z=28. First, the nitrogen and carbon dioxide contributions to m/z=28 

were subtracted. Then, the m/z=4, 28 and 44 (highest contributions of He, CO and CO2, 

respectively) were normalized to a total flow rate of 50 SCCM. The area under the curve was 

quantified with numerical integration and the moles of CO were calculated with the ideal gas 

law. CO was the only observed reaction product. 

3.2.7 In-Situ XRD 

In situ XRD was performed on the La1-XSrXCoO3 (X=0.25) in a Bruker D8 X Ray 

Diffractometer with a CuKα (λ = 0.154 nm) while heating in a reducing environment (5 SCCM 
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H2 /50 SCCM He). The heating ramp rate was 25 °C/min and was held for 10 min before the 

patterns were collected, at a scan rate of 2.5°/min. 

3.2.8 Recyclability Studies 

The performance of the recycled La1-XSrXCoO3 (X=0.25) was studied in the reactor 

system described previously. The sample was reduced under 10% H2/He for 30 min at 500 °C. 

Next, the temperature was ramped up in He until 850 °C was reached, here carbon dioxide was 

flowed (10% CO2/He) and this condition was held until the carbon monoxide generation signal 

was no longer observed. Afterward, the system was cooled down to 500 °C in He and the above-

described procedure was repeated two more times for a total of three H2-reduction/CO2-

conversion cycles. X-ray patterns of the samples were collected after each step in a Bruker X-

Ray Diffractometer with a Cu Kα (λ = 0.154 nm) using a step size of 0.0102° at room 

temperature for La0.75Sr0.25CoO3 fresh and after each H2 pretreatment (10% H2/He for 30 min) at 

500 °C and isothermal CO2 conversion (10% CO2/He) at 850 °C. CO quantification was 

performed as described in section 3.2.6. 

3.3 Results 

3.3.1 Synthesis, Surface Analysis, and Bulk Structure Characterization of the (La1-

xSrx)CoO3-δ Powders 

The TPO performed on LaCoO3 (X=0) after the esterification reaction and the first 

calcination at T = 450 °C is shown in Figure 3.3. At 360 °C, oxygen is consumed to form 

carbonate species, consistent with results [97] described elsewhere. As also discussed previously 

[97], a small peak at 650 °C indicated the crystallization of the amorphous powder that yields the 

perovskite crystalline structure. A similar experiment was performed on SrCoO3 (X=1), and the 

crystallization peak was seen at T = 700 °C. From these experiments, calcination temperatures of 
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700 and 750 °C were chosen for the samples with Sr content of 0≤X≤0.75 and X=1, respectively. 

Calcination at the lowest possible temperature (as long as above the crystallization point), favors 

oxygen mobility [126] and higher surface area of the powders [79]. As noted in the next section, 

low calcination temperatures may be the source of the multi-phasic samples.  

Fresh samples with Sr content of X=0 were found to be rhombohedral, as commonly 

reported for low substituted lanthanum cobaltites [127, 128], whereas the powder with X=0.25 

exhibited a single-phase cubic structure (Figure 3.4). Cubic phase perovskite-type oxides have 

enhanced oxygen mobility and increased phase stability [56, 89]. Commonly, a pseudo cubic 

structure is observed with two close diffraction lines around 33° 2θ (a rhombohedral structure 

with almost identical a and c lattice parameters).  To corroborate the cubic structure, a detailed 

diffraction study (not shown here) was performed on the 32.9° diffraction line of the X=0.25 

sample from 31° to 35° 2θ at 0.005° 2θ step size with a scan rate of 10s /step and no evidence of 

a rhombohedral structure was noted. The SrCoO3-δ sample showed a hexagonal crystalline 

profile, consistent with other reports [129]. The powders with X=0.5 and 0.75 contained a 

mixture of cubic and hexagonal phases, where the latter was probably due to a Sr-rich phase as 

the diffraction lines match well with the SrCoO3-δ (X=1) sample. Traces of strontium carbonate 

were observed in samples with X=0.5 and 0.75. As mentioned in the previous section, the lowest 

temperature possible for the calcination of samples was kept to favor highest surface areas. As a 

consequence, the samples with X=0.5 and 0.75 were found to be multiphasic. The surface areas 

showed no significant change between the fresh and post-reaction results (after isothermal H2-

reduction at 600 °C and isothermal CO2-conversion at 850 °C). Fresh samples possessed specific 

surface areas ranging from 3 to 10 m2/g; whereas the post-reaction surface areas ranged between 

3 to 15 m2/g. The results were consistent with literature [54, 55, 130, 131]. 
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3.3.2 Effect of A-Site Composition on the Reducibility by H2 and the Re-Oxidation 

by CO2 

The TPR profiles shown in Figure 3.5 demonstrated the reducibility of the samples as a 

function of temperature and Sr content (X). Low and high temperature regions (signalized in 

orange and purple, respectively) were evident for each profile. The low temperature region is 

related to the formation of additional oxygen vacancies (Δδ) in the La1-XSrXCoO3-δ structure [78]. 

In the La1-xSrxCoO3-δ system, initial oxygen deficiencies increase with X. In other words and 

consistent with the findings [127] by others, higher Sr substitution leads to a high initial 

concentration of oxygen vacancies in the as-synthesized samples. Due to the Sr2+ substitution in 

the (La1-xSrx)CoO3-δ system, cobalt coexisted as Co4+ and Co3+. During the reduction, all Co4+ is 

reduced to Co3+ and then a portion of Co3+ is reduced to Co2+. The high temperature region is 

attributed to a phase transition of the perovskite to base oxides and cobalt reduction to Co0 [63, 

78]. 

A different reduction profile is evident between the samples where the perovskite-oxide 

exhibits as a cubic structure (X=0, 0.25 and 0.5) and the samples with predominant hexagonal 

structure (X=0.75 and 1). The sample without Sr (X=0) had the highest onset reduction 

temperature, whereas low Sr substituted samples (X=0.25 and 0.5) had onset temperatures of 250 

°C lower. In these samples, Sr incorporation into the structure decreases the phase stability 

(enhances the reducibility) of the oxide [126]. Perovskite-oxides with X=0.75 and X=1, exhibit a 

similar reduction profile, with onset reduction temperatures of ~150 °C. Due to their 

predominant hexagonal or cubic-hexagonal phase mixture, they experience different structure 

changes than the cubic phases. As Sr substitution increases, the perovskite-oxides possess an 

oxygen deficient stable structure at room temperature [132], and the formation capacity of new 
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oxygen vacancies is lower than for a fully oxidized perovskite (where δ is close to 0). In 

consequence, the oxides with 0≤X≤0.5 have more formation capabilities for new oxygen 

vacancies (Δδ) than the high Sr substituted powders, as consistent with results [127] from other 

studies. 

The TPO-CO2 profiles (Figure 3.6) showed that carbon dioxide was effectively reduced 

to carbon monoxide on the H2-pretreated oxides. The peak carbon monoxide formation was 

achieved at around 830 °C for all the reduced powders. The high-temperature nature of the 

reaction was a consequence of the stability of the CO2 molecule. CO2 reduction to CO and O2 is 

thermodynamically unfavored and would happen spontaneously above 3000 K.  

An increase in the reducibility of the perovskite resulted in a decrease in its re-oxidation 

ability. Although the current study is on CO2 as the oxidizing agent, Nakamura and coworkers 

[126, 133] found a similar trend (increasing Sr-content decreased the re-oxidation ability of the 

reduced perovskite oxides) with O2 as the oxidant. SrCoO3-δ showed two CO generation regions, 

suggesting that a phase transition occurred during the H2 reduction and the resulting phases did 

not favor CO2 conversion. The sample without Sr (X=0) exhibited the highest onset re-oxidation 

temperature (~700 °C). The lowest onset temperature (~560 °C) was achieved by the three 

samples with both cations on the A-site (X = 0.25, 0.5, 0.75), which suggested the existence of 

an optimum La/Sr ratio where the re-oxidation kinetics were fast and started at lower 

temperatures. Quantification of the area under the CO conversion curve below 850 °C 

demonstrated that the combination of La-Sr favored CO production over single metals on the A-

site. La0.75Sr0.25CoO3 produced the most CO below 850 °C, whereas La0.5Sr0.5CoO3 produced 

25% less, followed by La0.25Sr0.75CoO3 with 39% less. The production area was around 50% 

smaller for samples containing either only La or Sr in the A-site. 
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The post-reaction XRD profiles (Figure 3.7) confirmed that the initial perovskite phase 

was not recovered after the reaction. On the contrary, for some samples, a Ruddlesden-Popper 

perovskite (An-1A’
2BnX3n+1) with n=1, also called a layered perovskite or K2NiF4 structure was 

formed. The abundance of the K2NiF4 structure, has an inverse relationship to Sr content, being 

predominant in X=0 and not detected in X=1. In the sample without Sr (X=0), the predominant 

K2NiF4 phase is orthorhombic La2CoO4 and trace amounts of CoO were also detected. 

Oppositely, for the samples containing both La and Sr (X=0.25, 0.5, 0.75), a majority of 

tetragonal La(2-Y)SrYCoO4 formed. The sample without La (X=1) contained only orthorhombic 

SrCO3, and metallic Co diffraction lines. As the Sr content (X) increases, so does the abundance 

of SrCO3, and Co, while the La(2-Y)SrYCoO4 is less predominant for samples with high Sr 

content. The Sr2CoO4 layered perovskite structure is absent in the X=1 post-reaction XRD 

because it is highly instable and requires high-pressures [70, 134] or a stabilizing substrate [135] 

to form. These findings suggested that the post-reaction samples with both La and Sr (X=0.25, 

0.5, and 0.75) possess a K2NiF4 structure presumably rich in La because part of the Sr was 

present in the SrCO3 phase. 

3.3.3 Assessment of La0.75Sr0.25CoO3 for CO2 Conversion to CO 

La0.75Sr0.25CoO3 was selected to study isothermal conversion of carbon dioxide for the 

production of carbon monoxide for four reasons. First, the as-synthesized material exhibited a 

single-phase cubic structure without impurities. Second, the H2-reduction profile of the sample 

showed a large low temperature reduction, suggesting significant oxygen vacancies formation 

capabilities. Also, CO2 conversion achieved in the H2-reduced materials was maximized when 

X=0.25, at the lowest temperature. Finally, the post-conversion crystalline phases exhibited the 
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layered perovskite structure as the predominant phase, when compared to other Sr-substituted 

samples. 

3.3.3.1 Phase Evolution under Hydrogen as a Function of Temperature. The in-situ 

XRD on La0.75Sr0.25CoO3 while undergoing H2-reduction from room temperature to 600 °C 

(Figure 3.8) was performed. At room temperature, the fresh powder had a cubic phase consistent 

with the results shown in Figure 3.4. At T = 400 °C (in the low temperature region), the 

diffraction lines shifted towards lower 2θ angles indicating an increase in the lattice parameter 

due to thermal expansion and oxygen vacancies formation [56, 87, 127]. The temperature 

increase caused the phase to begin transitioning to a layered perovskite phase (La(2-Y)SrYCoO4-σ). 

At T = 500 °C (transition between low and high temperature region), the cubic perovskite phase 

was barely present and the La(2-Y)SrYCoO4-σ phase had also been mostly reduced. The 

appearances of metallic cobalt and lanthanum oxide were noticeable. The absence of any 

identifiable phases containing Sr suggested that it was present in an amorphous phase or in small 

crystallites not detected by XRD. Further reduction above 600 °C (high temperature region) 

showed the predominance of La2O3 and the disappearances of the initial cubic perovskite and the 

layered perovskite phases. As temperatures progresses, the powders slightly lost crystallinity. 

The diffraction lines at 50°, 51° and 55° seen on the profiles in Figure 3.8, were due to a quartz 

sample holder and remain at a fixed position throughout the experiment.  

3.3.3.2 Isothermal CO2 Conversion. For La0.75Sr0.25CoO3- δ, carbon monoxide formation 

rates after isothermal H2-reduction at 400, 500 and 600 °C and subsequent isothermal CO2 

conversion at 650, 750 and 850 °C were measured (Table 1). For each reduction temperature, the 

production rates increased with increasing conversion temperature, as expected due to the 

stability of the CO2 molecule and the energy requirements for its activation.  
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CO production rates were favored when the isothermal H2-reduction was 500 °C, which 

coincided with the initial presence of metallic cobalt in the reduced oxides system that still 

contained both, according to Figure 3.8, the perovskite and perovskite layered phases. Since the 

lowest reduction temperature always yielded the lowest rate, the results implied that metallic Co 

is an important phase for reaction. An increase in the reduction temperature to 600 °C decreased 

the production rates, which may be caused by metallic Co aggregation. For these reasons, 500 

and 850 °C were chosen as the isothermal reduction and conversion temperatures, respectively. 

For comparative purposes, Co3O4 was tested using these conditions and the rate was 113.9 µmole 

CO/g/min (34% lower) despite having ~3 times as many Co atoms per mass as La0.75Sr0.25CoO3- 

δ.  

3.3.3.3 Recyclability. As presented in Table 3.2, the amount of CO produced on each 

CO2 conversion cycle, showed a maximum production during the first CO2 conversion (Post-

rxn1 in Figure 3.9). Then, CO production amount decreased ~25% during the second CO2 

conversion (Post-rxn2) and remained constant for the third re-oxidation (Post-rxn3). The 

crystallite size was calculated using Scherrer equation with K=1. The fresh material had a 

crystallite size of 17.7 nm (calculated from the peak positioned at 32.9°). After the first H2-

reduction (R1), the crystallite size increased to 29.7 nm (calculated from the peak positioned at 

29.9°) and during the subsequent treatments (Post-rxn1 and later), it was only slightly larger at 

33.9 nm (calculated from the peak positioned at 31.4°). The CO formation amount and the 

crystallite size of the structures suggested that the phases formed during the first reduction (R1) 

were different than the ones formed during subsequent reductions (R2 and R3), and that the 

crystalline structures during Post-rxn2 and subsequent steps were similar. Furthermore, CO 
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yields indicated that CO2 conversion was favored by phases formed during R1 in comparison to 

the ones formed during R2 and R3. 

Changes in the crystalline structures formed after each step of the cycle are presented in 

Figure 3.9, which has been normalized from 0 to 1 for each pattern. The cubic perovskite 

structure was initially present. After the first reduction (R1), a significant amount of the initial 

perovskite was reduced to La2O3, metallic Co and SrCO3. The perovskite diffraction lines shifted 

towards lower angles, indicating an increase in lattice parameters due to oxygen vacancies 

formation which caused some of the Co3+,4+ to reduce to Co2+. Only one Sr species was detected 

in one diffraction line of SrCO3, suggesting that amount of SrCO3 is small and/or most of the Sr 

was present as an amorphous structure. A ratio comparison of the highest intensity peak of La2O3 

to SrCO3 suggested that the initial perovskite could present a lower La/Sr ratio, which would also 

cause the perovskite to increase its lattice parameters and shift towards lower 2θ angles. After the 

first reaction (Post-rxn1), Co0 and La2O3 were oxidized to CoO and La2-YSrYCoO4, respectively. 

Sr was then present in two phases, SrCO3 and the K2NiF4 structure. The presence of Sr in the 

SrCO3 structure suggested that the La2-YSrYCoO4  phase contains a higher La/Sr than the 

perovskite after R1. From this cycle step forward, the predominant crystalline phases remained 

La2-YSrYCoO4 and SrCO3.  

The main diffraction line for CoO (42.3°) decreased in the reduced phases (R2 and R3) as 

the metallic Co diffraction line increased (44.3°). Co was not detected in the re-oxidized phases 

(Post-rxn2 and Post-rxn3) and the intensity of the main CoO diffraction line increased. The 

difference observed between the crystalline structure found at 500 °C during the in-situ TPR 

(Figure 3.8) and the crystalline structure after isothermal H2-reduction at 500 °C (Figure 3.9-R1) 

was expected. During the in-situ experiments, the time the sample had undergone reduction at 
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500 °C was longer than the 30 min the sample spent under the isothermal reduction. As a 

consequence, during the in-situ XRD while undergoing TPR, the sample was further reduced and 

the perovskite structure could not be detected. 

3.4 Discussion 

3.4.1 Role of Metallic Cobalt in the Reduction of Carbon Dioxide to Carbon 

Monoxide 

Carbon dioxide adsorption onto perovskite-type oxides has been explained before [136], 

but contradicting points of view exist on the role that metallic cobalt could be playing in CO2 

adsorption/dissociation. Carbon dioxide could adsorb either dissociatively [137] or molecularly 

[138] onto metallic Co. Based on the experimental results here presented, two mechanism routes 

are proposed. First, carbon dioxide could adsorb on the layered perovskite [56], and then 

dissociate into CO and O. Then, the O atom could spillover into the metallic cobalt, oxidizing it 

into CoO and yielding CO as the only gas phase product. Second, carbon dioxide could 

chemisorb onto the metallic cobalt and dissociate into CO and O [137]. Following, O could re-

oxidize the metallic cobalt into CoO while releasing CO. Both of these explanations would 

justify why the conversion was highest when the H2-reduction formed metallic cobalt (at 500 and 

600 °C). In addition, the diffraction lines of the layered perovskite in the recyclability studies do 

not show evidence of oxygen vacancies formation or re-oxidation, which suggested that the 

layered perovskite La2-YSrYCoO4 could be stabilizing the Co0 particles (rather than participating 

directly by oxidizing), preventing sintering during the H2 reduction step. This claim is supported 

by comparison of CO production rate of the reduced La0.75Sr0.25CoO3-d to that of Co3O4. As a 

result, CO2 conversion rates would increase due to the small crystallites having faster re-

oxidation kinetics. 
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3.4.2 Comparison of RWGS-CL to Other Techniques 

Carbon monoxide production from carbon dioxide via the RWGS-CL process is 

compared to two-step thermochemical cycles, RWGS, and photochemical conversion with 

respect to materials, reaction temperatures and environment. A summary of the comparison is 

presented in Table 3. Studies that reduced CO2 to C and O2 [48, 51, 52, 123] will not be 

considered in the discussion.  

3.4.2.1 Thermochemical Cycles. A variety of oxides with high oxygen mobility such as 

cerium oxide [109, 111-113], partially substituted cerium oxide [74, 114], and perovskite oxides 

[113], as well as base oxides [114], have been studied for CO2 conversion. In general, partially 

substituting an oxide such as introducing Zr in CeO2[112] increases the rate of carbon monoxide 

formation. Using oxides with higher oxygen mobility than CeO2 also increases reaction rates 

[112, 114], but a consensus on the optimum material has not yet been achieved. Even though 

Scheffe et al. [110] determined that La1−XSrXMnO3−δ perovskites would be thermodynamically 

favored to become oxygen deficient at lower temperatures than ceria, the materials were un-

favored to re-oxidize with carbon dioxide. McDaniel et al. [113] observed CO formation on 

oxygen deficient La1−XSrXMn1−YAlYO3−δ perovskite-type oxides, although with low CO 

formation rates, for as many as 80 cycles.  

Hydrogen use is particularly attractive when the reaction temperatures between two-step 

thermochemical cycle and RWGS-CL processes are compared. The temperature needed for the 

oxygen desorption of the oxides (first step of thermochemical cycles) is at least 1350 °C [113], 

which is around 1000 °C more than the lowest reduction temperature used in this study. 

Moreover, CO2 reduction temperatures for thermochemical cycles were at least 150 °C higher 

[109] than the lowest conversion temperatures used with RWGS-CL (650 °C). The CO 
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production rates observed in this study are within the same order of magnitude than the highest 

rates observed in two-step thermochemical cycles [109]. The technical trade-offs of this 

comparison is that the RWGS-CL process uses hydrogen to obtain materials more reactive with 

CO2 and low temperatures whereas the two-step thermochemical cycles use higher temperatures 

with material less reactive with CO2 to achieve similar rates. In both the two-step 

thermochemical and the RWGS-CL processes, the ability of CO2 to re-oxidize the pre-treated 

material is a key feature. Depending on the original material used and the environment, the time 

needed to complete the CO2 re-oxidization step can vary significantly. Therefore, in addition to 

reaction rates, the amount of CO produced per mass of initial oxide (labeled as amount in Table 

3) can be a valuable tool in determining which oxides are favored towards the redox cycles with 

CO2 as the oxidant. In general, the mass-normalized CO production amounts increases in 

partially substituted oxides when compared to the base oxides [112, 113]. The mass-normalized 

CO production amounts observed during this study are one order of magnitude higher than other 

results (see Table 3.3), suggesting that a H2-treatment of the perovskite and layered perovskite 

oxides results in maximum CO production at low temperatures compared to re-oxidation during 

thermo-chemical cycles. 

Another important manner for comparison is the techno-economic assessments. The two-

step thermochemical process driven by concentrated solar energy requires a special reactor 

system and a solar field, which both increase the capital costs [115]. Solar concentrators are 

being scaled up to heat water for electricity generation, but concentrators for thermochemical 

cycles are further away from larger scale studies. In light of these challenges, a techno-economic 

analysis [119] estimated that the minimum selling price of gasoline from a H2O-splitting/CO2-

splitting (with solar concentrators) process with incorporated FTS as 7.01 US$ per gallon of 
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gasoline equivalent. Alternatively, solar-thermo-chemical approaches, such as those already 

described by Mallapragada et al., [42] require renewable H2 and most of the solar energy is 

directed towards its production. A review of estimates of renewable hydrogen production costs 

indicated 6.5 USD/KgH2 [139] and the cost has been proposed [107] to decrease by roughly half 

in the upcoming decades. At 6.5 USD/KgH2, the cost of hydrogen roughly contributes $3.80 to 

the cost per gallon of gasoline.  With the renewable hydrogen production being a major 

contributor to the cost, it suggests that these two processes are within the same order of 

magnitude on cost. A direct techno-economic comparison between solar-thermo-chemical and 

thermochemical cycles processes has not yet been published, so it is unclear as to which method 

would be less expensive and the degree of success in the price reduction of renewable hydrogen 

is a major contributor. 

3.4.2.2 RWGS. Carbon dioxide hydrogenation to form carbon monoxide and steam 

through RWGS takes place at temperatures as low as 400 °C [140]. At this condition, the process 

is thermodynamically unfavored and the equilibrium is shifted towards the reactants. RWGS-CL 

avoids the need for separation of the products because they are being formed independently, so 

the reaction can be driven forward without the need for increasing the reactants concentration or 

removing products. During the experiments performed in this work, there was no evidence of 

other products aside CO such as methane, as generally seen in RWGS [16, 26, 141, 142]. 

Common carbon monoxide production rates in the RWGS differ in one or two orders of 

magnitude (4.3 [142] to 850 [143]). These variations could be a consequence of a combination of 

different conditions at the feed and different catalysts. Although varying significantly, the higher 

RWGS rates are within the same order of magnitude than the rates found in this study. In 

addition, RWGS-CL does not require flow of excess hydrogen, which potentially translates to 
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lower H2 consumption when compared to RWGS, which commonly uses H2 in stoichiometric 

excess [16, 26, 143]. 

3.4.2.3 Photochemical. In general, photochemical reduction offers the advantage of CO2 

conversion at or near room temperature. The use of water [116, 117] instead of hydrogen as a 

proton source makes it advantageous when compared to RWGS-CL. However, low formation 

rates, long batch reaction times, low product selectivity, and dependence on the use of precious 

metals [116-118] all present major challenges for applying this technology. The RWGS-CL 

process is competitive when compared to the photochemical processes because its reaction times 

are approximately an order of magnitude quicker than batch reaction times for CO2-photo-

reduction (see Table 3). Also, the mass-normalized CO production amount obtained with the 

RWGS-CL process is higher than the ones obtained by the common catalyst used in the 

photochemical CO2 conversion [116-118]. As a result, even though photochemical approach may 

provide the best long-term route, further developments are needed and thermochemical 

approaches provide improved short-term impact. 

3.5 Summary 

A series of La1-XSrXCoO3-δ (X = 0, 0.25, 0.50, 0.75, and 1) materials were synthesized, 

characterized, and examined for CO2 conversion. Initial temperature-programmed studies 

determined that La0.75Sr0.25CoO3-δ had highest structure stability under reducing environments 

and the greatest CO production capacity during re-oxidation by CO2. For that reason, this sample 

was selected for further experimental evaluation. Isothermal CO2 conversion studies 

demonstrated that the optimal isothermal reduction and conversion temperatures for maximizing 

the CO production rates were 500 °C (of 400, 500 and 600 °C) and 850 °C (of 650, 750 and 850 

°C), respectively. Post-reaction XRD studies indicated that the initial perovskite structure phases 
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were converted to a layered perovskite structure (La2-YSrYCoO4), which occurred likely because 

of the poor oxidation ability of CO2. The optimal reduction temperature to maximize the CO 

production rate correlated to when the layered perovskite (La2-YSrYCoO4) was in close contact 

with metallic Co. This sample was then stable for at least three cycles of reduction-conversion, 

as demonstrated by XRD and isothermal CO2 conversion experiments. The high CO production 

per mass of material, the inherent separation and selectivity achieved, and the recyclability of the 

process make the use of RWGS-CL promising as a plausible scalable CO2 reduction technology 

for the formation of C1 feeds. If a renewable hydrogen source is used, the entire conversion 

system could potentially become sustainable.  
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Figure 3.1 Schematic representation of the overall proposed process. Captured CO2 is flowed 
through the H2-reduced oxides in the RWGS. The CO produced is fed to a CO hydrogenation 
reactor for fuel production. 

 

 

 

Figure 3.2 Schematic representation of CO2 conversion to CO on the oxygen deficient oxide 
system. A H2 treatment reduces the perovskite-type oxides to metallic cobalt and base oxides 
while producing water. With CO2 present, the reduced phases re-oxidize producing CO. 
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Figure 3.3 TPO profile of uncharred LaCoO3 to determine the optimal charring temperature. 
Oxygen (m/z=32) and carbon dioxide (m/z=44) signals are shown. The carbonates formation at 
650 °C shows the formation of single phase perovskite structure. 
 

 

Figure 3.4 X-ray diffraction patterns of fresh (La1-xSrx)CoO3-δ powders. The fresh powders with 
X=0, X=0.25 and X=1 presented single-phase crystalline structures (rhombohedral, cubic and 
hexagonal, respectively). Powders with X=0.5 and X=0.75 presented predominantly cubic 
structure, with a mixture of hexagonal (h) and SrCO3 (*) which increase with X. 
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Figure 3.5 Temperature-programmed reduction with 5%H2/N2 of (La1-xSrx)CoO3-δ samples. 

 

 

 

Figure 3.6 Carbon monoxide generation with 10%CO2/He using H2-pretreated (La1-xSrx)CoO3-δ. 
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Figure 3.7 X-ray diffraction patterns of (La1-xSrx)CoO3-δ samples after a 10% H2/He pretreatment 
at 600 °C and after isothermal CO2 conversion with 10% CO2/He at 850 °C. Phases found: 
SrCO3 (*), La2-YSrYCoO4 ( ), La2CoO4 ( ), CoO ( ) and Co ( ). 

 

 

 
Figure 3.8 Changes in La0.75Sr0.25CoO3-δ crystalline structure while it is heated in 10% H2/He. 
Phases observed include La0.75Sr0.25CoO3-δ (p), La2-YSrYCoO4 ( ), Co ( ), La2O3 ( ), and quartz 
sample holder (�). All diffraction patterns are normalized to the most intense line in the room 
temperature pattern.  
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Figure 3.9 Changes in La0.75Sr0.25CoO3-δ crystalline structure throughout the cycles. Phases 
observed include La0.75Sr0.25CoO3-δ (p), La2-YSrYCoO4 ( ), SrCO3 (*), La2O3 ( ), Co ( ), and CoO 
( ). 
 

Table 3.1 CO generation rate during the first ten min of the reaction. 
 

Rate 
µXYZ	Yx	-#

yPJXn	Yx	zRPY{nvo|R ∗ Xok
 

Sample Red. T / Conv. T 650 °C 750 °C 850 °C 

La0.75Sr0.25CoO3-

d 

400 °C 14.7 65.7 146.3 
500 °C 38.0 98.4 172.6 ± 17.4a 
600 °C 20.6 73.4 198.1 

a Experiment was performed three times.  
 

Table 3.2 CO produced during the cycles of H2 reduction and CO2 re-oxidation of 
La0.75Sr0.25CoO3-δ. 
 

CO2 conversion cycle CO (µmol) 
First CO2 conversion 302.5 

Second CO2 conversion 226.5 
Third CO2 conversion 226.7 
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Table 3.3 Rates and evolution of CO produced on different materials at STP conditions. 
 

Method Material Treatment T 
(°C) 

Conversion 
T (°C)  

Amount 
(µmol 
CO/g) 

Rate (µmol 
CO/min/g) 

Reaction 
time (min) Cycles Reference 

RWGS-CL La0.75Sr0.25CoO3-δ 
500 

(under H2) 
850 4032.8 c,d 100.8 c,d 40 3 This work 

Tw
o 

st
ep

 th
er

m
oc

he
m

ic
al

 

CeO2 
1600 a,b 900 278.3 74.2 d,e 3.75 i 4 Chueh et 

al.[109] 1500 a 800 781.8 208.5 d,e NA 
CeO2 1400 a 1200 98 c 2.8 35 3 Le Gal et 

al.[112] Ce0.75Zr0.25O2
 f 142 c 4.1 

CeO2 1600 a,b Cool from 
Tred to ~300 232.6 e 6.5 36 h NA Furler et 

al.[111] 
CeO2 

1350 a 1000 

46 3.4 

13.4 g NA McDaniel 
et al.[113] 

Sr0.4La0.6Mn0.6 
Al0.4O3-δ 

294 21.9 

Sr0.6La0.4 Mn0.6 
Al0.4O3-δ 

286 21.3 

Sr0.4La0.6 Mn0.4 
Al0.6O3-δ 

247 18.4 

Sr0.6La0.4 Mn0.6 
Al0.4O3-δ 

140  g 9.3 15 up to 
80 

Co0.67Fe2.33O4/YSZ 1400 a 1100 127.8 e 0.7 180 g 7 Miller et 
al.[114] Ce0.25Zr0.75O2 1400 a 1100 144.9 e 0.5 310 g NA 
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Table 3.3 (Continued). 
 

Method Material Feed Conversion 
T (°C) 

Amount 
(µmol 
CO/g) 

Rate (µmol 
CO/min/g) 

Reaction 
time (min) Cycles Reference 

Ph
ot

o-
ch

em
ic

al
 Cu/Pt/TiO2 CO2 + H2O(l) 49.85 33.12 0.138 240 NA Zhai et 

al.[116] 

5% Au/ZnO H2/CO2 : 3/1 
RT raised to 

650 with 
plasmonics 

20.1 0.067 300 5 Wang et 
al.[118] 

1% Au/SrTiO3 CO2 + H2O(l) RT 8.64 0.006 1440 NA Zhou et 
al.[117] 

Method Material Feed Conversion T ( °C) Rate (µmol 
CO/min/g) 

Time-on-
stream (min) Reference 

RWGSR 

Cu/Al2O3 H2/CO2 : 1/9 ~500 540 i,g 60 Chen et 
al.[141] 

2% Pt/CeO2 H2/CO2 : 4/1 290 842.45 i 1200 Goguet et 
al.[143] 

Pd/CeO2 (10) 
/Al2O3 aged  H2/CO2 : 1/1 260 4.3 i NA Pettigrew 

et al.[142]  
 
a Under inert environment. b Concentrated solar. c First cycle. Note that values are lower than corresponding results of Table 3.1 
because the reaction time to complete CO production is used here.  d Average rate. e µmol of CO calculated with ideal gas law from 
volumetric rates. f Synthesized by the Pechini method. g Estimated from figure in reference. h Calculated from mean specific and total 
specific CO evolution values in Table 1 from reference [111]. i Calculated from the yields with ideal gas law.   
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CHAPTER 4: ISOTHERMAL REVERSE WATER GAS SHIFT CHEMICAL LOOPING  
 

ON LA0.75SR0.25CO(1-Y)FEYO3  PEROVSKITE-TYPE OXIDES3 
 

 

4.1 Introduction 

In 2011, the total CO2 emissions exceeded 30,000 Mt [105], but less than 1% of the CO2 

produced is re-purposed in industrial processes [3]. Since late 2010, the EPA began 

contemplating setting restrictions to CO2 emissions from stationary sources [144]. In particular, 

the EPA has promoted the use of alternative technology by CO2 emitters including coal plants 

for emission reduction. Current efforts to decrease CO2 emissions are dominated by carbon 

capture and storage (CCS), also called carbon sequestration. CCS is considered a potential CO2 

mitigation technique, but even at the top of its estimated storage capacity (120 Mt per year 

[145]),  CCS will not be able to mitigate more than 1% of the global CO2 emissions. In addition, 

CO2 emissions are expected to increase due to population and economic growth. Here, an 

alternative to CCS is proposed, where CO2 can be transformed to high-value chemicals needed to 

close a synthetic carbon cycle. 

A potentially sustainable way to close a CO2-hydrocarbon cycle is to convert CO2 to CO, 

as an intermediate step to synthesize liquid fuels [16]. Recently, Mallapragada et al. [42] 

performed a techno-economic analysis on the conversion of CO2 to fuels by different approaches 

including using algae, photosynthesis and the reverse water gas shift reaction (RWGS). The 

																																																								
3 Reprinted with permission from Y. A. Daza, D. Maiti, R. A. Kent, V. R. Bhethanabotla, and J. N. Kuhn. 
Isothermal reverse water gas shift chemical looping on La0.75Sr0.25Co(1-Y)FeYO3  perovskite type oxides. 
Catalysis Today 2015, 258, 691-698. Copyright © 2015 Elsevier 
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study determined the RWGS process, operated at equilibrium at 976 °C and 30 atm, as the 

method with the highest estimated current and future efficiency. In this process, solar energy was 

used to heat the reactor to this temperature and to power electrolyzers, which provided the H2 for 

the process. In analyzing the solar energy use in the overall process, the dominant need was to 

generate H2 for the RWGS and CO hydrogenation reactions. Thus, improvements in the 

efficiency of H2 use would aid in making the process more economically feasible.  

Previously, we have developed the reverse water gas shift chemical looping (RWGS-CL) 

process on Co-based perovskites [45]. The RWGS-CL is a two-step process for the conversion of 

CO2 to CO using a redox cycle of a parent metal oxide. The first step of the process is the 

reduction by H2 of the parent metal oxide and the second step is the oxidation of the reduced 

material by CO2 with CO forming. By performing the RWGS-CL rather than RWGS catalysis, 

H2 use can be minimized by conducting stoichiometric reactions without the need of excess H2 

for kinetic and thermodynamic reasons and avoiding the side methanation reaction by inherently 

keeping the H2 and CO separated. In our original report [45], Co stabilized on a layered 

perovskite oxide support was the active phase for CO2 conversion and was formed by H2 

reduction at 500 °C. The use of hydrogen allows for the generation of the active phases in the 

perovskite, at temperatures ~500 °C lower than thermochemical studies with active phases 

generated by extensive heating performed on similar oxides [109, 111-114], but causes the Co-

based perovskite to change crystalline phases. The second step is a CO2 re-oxidation of the 

material, which yielded increasing CO generation rates with rising temperature. The obtained 

rates for CO formation on metallic cobalt supported on layered perovskite were competitive with 

RWGS [141-143], and significantly improved in comparison to photochemical reactions [116-
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118]. But still, the minimum temperature for generation of CO was 650 °C and the highest rate 

was obtained at the highest temperature tested (850 °C). 

Although this initial study with Co-based materials showed promise, there is a desire to 

lower the temperatures in the process and to use the same temperature (referred to as an 

isothermal cycle) for both steps in the process. Operation at lower temperatures allows for use of 

less expensive materials (i.e., stainless steel) in the reactor and reduces the potential heat losses 

in the system. Isothermal operation would decrease process inefficiencies caused by cycling 

between temperatures. Iron use is popular in oxygen carrier materials for chemical looping 

because of its non-toxic nature, low carbon formation, low cost and low tendency towards 

agglomeration [146, 147]. In addition, there is both experimental [51, 52, 123, 148] and 

computational [137] evidence that the use of Fe or Fe with Co in the perovskite phase would aid 

in lowering the temperatures in the RWGS-CL process.  

Experimentally, two groups have studied conversion of CO2 to CO by oxidizing a 

hydrogen reduced Fe-containing material. Bhavsar et al. [123, 148] studied CO2 conversion on a 

three-step Chemical Looping Dry Reforming (CLDR) process using Fe-based oxides and 

supported Fe particles at 800 °C with either H2 [123] or CH4 [148] as the reducing agent. The 

three-step nature of the process is due to the poor oxidizing nature of CO2, which led to 

incorporation of a second oxidant (oxygen from air) to recuperate the original structure of the 

oxygen carrier. Similarly, Nordhei et al. [51] demonstrated CO2 conversion to CO and C(s) at 

300 °C, by incorporating Co, Zn and Ni into Fe-based spinels. The same group showed that by 

reducing Co-substituted Fe-spinels at 500 °C, a Co-Fe alloy was formed and both metals 

participate in the conversion of CO2 to CO and C(s). Furthermore, a mixture of Co and Fe 

enhances CO2 conversion when compared with the base material (Fe-spinel) [52]. It is unclear if 
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the CO production rates obtained from these studies on reduced spinels are comparable to the 

rates obtained on reduced perovskites. In a DFT study made by Bligaard et al. [137], the 

dissociative chemisorption of carbon dioxide was found to be more favorable on metallic iron 

than on metallic cobalt. Transition metals with lower energies for CO2 dissociative 

chemisorption could lower the temperature for CO2 conversion. However, it is not expected that 

the Fe perovskite phase will decompose to the base metal and metal oxides as Co-based 

materials did in the previous study on the RWGS-CL process. Incorporating Fe into the 

La0.75Sr0.25CoO3 perovskite improves its crystalline structure stability under a reducing agent 

until ~850 °C [88, 149].  

In addition to reactivity considerations that have been based on operation temperatures, 

product selectivity of the CO2 conversion process may also prove significant. This is especially 

important as the work described above indicated C(s) may form when reacting CO2 with Fe-

containing oxide systems. The desired reaction pathway in the RWGS-CL process is described in 

reactions (2.1) and (2.2), first introduced in Chapter 2. In the first step, hydrogen is flowed and 

oxygen vacancies and water are formed. When CO2 is flowed (second step), one O regenerates 

the perovskite to its initial fully oxidized state, while forming CO. This pathway intensifies our 

previous work because the first reaction (2.1) does not decompose the perovskite phase into its 

base and metallic oxides. 

!"#$ 	+	'	() → !"#$+, + '	()#                                                                                          (2.1) 

!"#$+, 	+	'	-#) → !"#$ + '	-#                                                                                          (2.2) 

In addition to the desired pathway (reactions 2.1 and 2.2), a competing pathway (reaction 

4.1) involving CO2 decomposition to C(s) and O2 may also be possible. In reaction (4.1), C(s) 
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could be deposited on the perovskite surface while O2 could be oxidizing the oxygen deficient 

perovskite or leaving the system as gaseous O2.  

!"#$+, 	+	'	-#) → !"#$+, + '	- + ' 2#)                                                                         (4.1) 

In this study, the RWGS-CL has been intensified to work isothermally at 550 °C without 

phase change by incorporating Fe into the B site of the perovskite. Being a two-step process, the 

RWGS-CL avoids the need for additional set ups to further oxidize the oxygen carriers. The use 

of Fe-based perovskites allows for an isothermal RWGS-CL at a temperature 300 °C lower than 

the process developed on Co-based perovskites. Structure stability and CO production rates 

throughout five RWGS-CL cycles on an Fe-rich (La0.75Sr0.25Co(1-Y)FeYO3) perovskite were 

studied. CO production rates were found to be of the same order as our previous study. The 

enhanced structural stability caused by the incorporation of Fe in the perovskite is maintained 

throughout the reaction cycles. Furthermore, the selectivity of the process was determined as 300 

times more favorable towards reaction 2.2 (CO) when compared to reaction 4.1 (C).  

4.2 Experimental Procedure 

4.2.1 Synthesis of Oxide Powders 

A Pechini synthesis as described by Popa and Kakihana [97] was followed to synthesize 

the La0.75Sr0.25Co(1-Y)FeYO3 powders. First, citric acid (Aldrich, ACS grade ≥99.5%) was 

dissolved in water at 60 °C while stirring. Then, the precursors La(NO3)3 (Aldrich, 99.9%), 

SrCO3 (Alfa Aesar, 99.994%), CoCO3 (Aldrich, Co 43-47%) and Fe(NO3)3 (Aldrich, 98+%) 

were added to the solution and were stirred at the same temperature for 2 h. Next, the solution 

temperature was raised to 90 °C and ethylene glycol (Aldrich, Reagent Plus ≥99%) was added. 

The solution was kept at this temperature for 7 h while stirring. The resulting resin was 

transferred to a crucible and was heated (at 25 °C/min) in a (Vulcan 3-550) furnace from room 
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temperature to 450 °C for 2 h. Upon cooling, the resulting powder was crushed and was heated at 

the same ramp rate, from room temperature to 950 °C for 6 h.  

The molar ratios of the precursors used were (A site : B site : citric acid : ethylene glycol 

= 1:1:10:40) following the synthesis method of Ivanova et al. [78].  

4.2.2 Characterization 

4.2.2.1 XRD. A Bruker X-Ray Diffractometer was used to collect the diffraction patterns 

of the powders from 20 to 100 2θ° at room temperature. The X-ray source used was a Cu Kα (λ = 

0.154 nm) with a step size of 0.0102 2θ° and an average time per step of 1.2 s. 

4.2.2.2 BET Surface Area. Surface areas were determined by the multi-point BET 

method using N2 physisorption (at T = 77 K) performed in an Autosorb iQ Quantachrome Gas 

Sorption System. The samples were outgassed for 6 h at 180 °C prior to analysis. 

4.2.3 Reaction Experiments 

In each experiment, approximately 75 mg of powder was packed between high-

temperature resistant glass wool in a quartz U-tube for each experiment. The U-tube was 

attached to a reactor system with connections to He, CO2 and H2, (gas purities ≥99.99%) 

regulated by Alicat mass flow controllers. The reaction products were monitored with a MKS 

Cirrus mass spectrometer (MS). For quantification of the CO2, H2O, H2 and CO signals, the m/z 

ratios of 44, 18, 2 and 28 were monitored respectively. Ionization factors and fragmentation 

patterns of each species were analyzed and used in the quantifications. The quantification 

procedure is explained elsewhere in more detail [45]. 

The total gas flow rate was held constant at approximately 50 SCCM during H2/He and 

He flows and at 48.5 SCCM during the CO2/He flow. Prior to each experiment performed in the 

MS, the powders were treated in 20% O2/He from room temperature to 850 °C (ramp rate of 25 
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°C/min) and held for 20 min. Upon cooling under the same environment, the flow was changed 

to He until the monitored fragmentation patterns remained stable, before continuing with the 

experiments. 

4.2.3.1 Temperature-Programmed Reduction (TPR). In 10% H2/He, the samples were 

heated to 850 °C at 10 °C/min and held at that temperature for at least 1h. The reductions were 

monitored by water formation via the m/z = 18 (H2O) signal.  

4.2.3.2 Temperature-Programmed Oxidation with CO2 (TPO-CO2). The samples 

were reduced in 10% H2/He at 550 °C for 30 min, after which, the samples were cooled to 

approximately 100 °C in He. Upon stabilization of the fragmentation patterns, 6.7% CO2/He was 

flowed to the samples for approximately 30 min, and then, the samples were heated to 850 °C (at 

10 °C/min) and held at that temperature until the signals remained stable. 

4.2.3.3 Isothermal RWGS-CL. Five RWGS-CL cycles at 550 °C were conducted on the 

La0.75Sr0.25FeO3 sample. The sample was reduced under 10% H2/He for 20 min at 550 °C. This 

step was followed by a 20 min He flushing and a 6.7% CO2/He flow for 20 min. The system was 

flushed with He again for 20 min, and the cycle was repeated 4 more times. The first cycle of 

RWGS-CL was performed three times to determine the reproducibility of the results. H2 and CO 

production were quantified as described previously. 

4.2.3.4 Carbon Deposit on La0.75Sr0.25FeO3. The selectivity of the RWGS-CL process 

towards CO (reaction 2.2) and C(s) (reaction 4.1) was determined by quantifying the difference 

between two experiments, described below. In both experiments, the samples were pre-treated in 

O2 as explained earlier, then, one cycle of RWGS-CL at 550 °C was performed. The 

environment was then changed to He and the sample was cooled to 100 °C. 
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In the first experiment, the environment was changed to 10% O2/He. Next, upon 

stabilization of the fragmentation patterns, the sample was heated up to 850 °C (at 10 °C/min) 

and the CO2 produced was quantified similarly as to other species.  

In the second experiment, the sample was heated up in He to 850 °C (at 10 °C/min) and 

the CO2 desorbed was quantified as described before. The difference between the CO2 produced 

(from experiment 1) and CO2 desorbed (experiment 2) was taken as representative of the C(s) 

deposited during the RWGS-CL. 

4.3 Results and Discussion 

4.3.1 Surface Area, Bulk Structure, Reducibility, and Re-Oxidation Capabilities 

The Y=0 sample exhibited a cubic structure (Figure 4.1), as reported before for 

La0.75Sr0.25CoO3 synthesized by the Pechini method [45]. The diffraction pattern also showed the 

main diffraction line of Co3O4 visible at 36.85° 2θ. The Y=0.5 sample was predominantly cubic 

(pink dotted lines), with orthorhombic diffraction lines visible (black dotted lines) and the main 

diffraction line of Co3O4 visible at 36.77° 2θ. The presence of Co3O4 in the Y= 0 and 0.5 samples 

could be a consequence of a B-site deficiency in the perovskite or caused by excess of cobalt 

precursor in the beginning of the synthesis. It is unclear if the orthorhombic diffraction lines are 

due a Fe-rich perovskite (with very high Fe/Co ratio) or the diffraction pattern of 

La0.75Sr0.25FeO3, which could be justified because some of the Co is already out of the structure 

as Co3O4. 

The Y=0.75 and Y=1 samples exhibited an orthorhombic crystalline structure, consistent 

with other reports for La(1-X)SrXFeO3 perovskites rich in La [150-153] and contradicting other 

groups which have used different methods to synthesize La(1-X)SrXFeO3 and have obtained 

rhombohedral samples with an R3c symmetry [131]. The Y=0.75 sample also exhibited two 
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diffraction lines at 30.34° and 35.75° 2θ corresponding to the most intense diffraction lines of 

cubic Fe3O4. 

The lattice parameters and unit cell volume of the cubic samples increased with Fe 

content (as observed by others [151]) for both the predominantly cubic and predominantly 

orthorhombic samples (Table 3.1) due to the larger ionic radii of Fe [154]. The surface areas 

(Table 3.1) were lower than the surface areas obtained by our group previously [45] due to the 

synthesis conditions, which involved higher temperatures. As a consequence, the crystallinity of 

the samples increased using 950 °C, when compared to previous samples synthesized at 750°C. 

Two distinct reduction features are observed on the temperature-programmed reduction 

profiles of all the La0.75Sr0.25Co(1-Y)Fe(Y)O3 powders (Figure 4.2). The first (low-temperature) 

region corresponded to formation of oxygen vacancies in the structure of the material as a 

consequence of changes in the oxidation state of Co and Fe possibly changing from Co4+ to Co3+, 

Co3+ to Co2+ [78] and Fe4+ to Fe3+ [88] respectively. The second (high-temperature) region 

corresponded to the reduction of the oxygen-vacant perovskite into its base oxides [63, 78] and 

metal phases [155] for the Co-containing samples (with reduction proportional to their Co 

content), and predominantly oxygen vacancies formation on the Fe-rich perovskites [88], 

although Fe0 has been detected by XRD on Y=0.8 samples after reduction under H2 at 800 °C 

[151]. The TPR profiles showed that as the Fe:Co ratio increases, the two reduction regions 

shifted to higher temperatures and the TPR profiles decreased in intensity. The improved 

stability is in agreement with literature. Natile et al. found that perovskites containing Fe on the 

B site maintained a predominant perovskite structure even after reduction at 600 °C for 30 min 

under H2 [151]. For the sample with Y=1, the reduction happens in one step, at temperatures 
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higher than 700 °C [155]. (La,Sr)(Co,Fe)O3 perovskites typically reduce at higher temperatures 

as the Fe content increases [88].  

As the Fe content increased, the amount of water produced during the reduction step prior 

to the TPO-CO2 (T=550°C, data not shown), decreased from 1.09 mol H2O/ mol perovskite for 

Y=0, to 0.71 and 0.72 mol H2O/ mol perovskite for Y=0.5 and Y=0.75 respectively to 0.43 mol 

H2O/ mol perovskite for Y=1. An analysis of these numbers reveals that the oxygen removed 

from the Y=0 was at least 1.6 times higher than the rest of the samples. Therefore, it is likely that 

the Y=0 sample has been reduced to its base oxides and metals, consistent with the previous 

study [45]. The mixed Fe and Co perovskite samples may also undergo a reductive phase change 

to its base oxides and metals. However, as discussed later, XRD was conducted for the Fe 

sample (Y=1) after reduction and the stability of the perovskite phase was verified. The 

consequences of the degree of the reduction of the perovskites on CO formation will be 

discussed later.  

The samples containing Fe (Y=0.5, 0.75, 1) have a higher structure stability than the Y=0 

sample. The similarity in the reduction of the Y=0.5 and 0.75 samples was also evident from 

their reduction profiles (Figure 4.2), which are nearly identical and in between Y=0 and Y=1 

samples. It is important to state that a portion of the H2O produced could be due to the reaction 

between H2 and the O2 adsorbed in the perovskite surface during the high-temperature O2 

treatment. 

Carbon monoxide formation from CO2 as a function of temperature on the reduced 

powders (Figure 4.3) exhibited different behavior when the samples containing Fe (Y=0.5, 0.75, 

1) are compared to that without (Y=0). As the Fe content (Y) increased, the amount of CO 

produced during the CO2-conversion step decreased from 0.66 mol CO/ mol perovskite for Y=0, 
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to 0.19 mol CO/ mol perovskite for Y=0.5, 0.17 mol CO/ mol perovskite for Y=0.75 and 0.12 

mol CO/ mol perovskite for Y=1. The decreased production of CO as Y increased was directly 

related to the degree of reduction of each perovskite during the 30 min H2-reduction step 

previous to the CO2-conversion step (described above). Higher degrees of reduction caused the 

perovskite to partially or completely change crystalline phases. The production of CO was higher 

on the Y=0 sample due to its higher degree of reduction, which caused it to change crystalline 

phases to Co stabilized on a La2O3 support [45]. During the reduction of the Y=0.5 sample, a 

smaller fraction of the crystalline perovskite could be reduced to base oxides and metals due to 

the higher structure stability induced by the partial substitution of Fe on the B site. XRD (not 

shown) was performed on the Y=0.5 sample after reduction and no evidence of metallic cobalt 

was observed. However, metallic cobalt could still be present as others have seen in 

magnetization studies when it has been undetected by XRD [155], which is more sensitive to 

larger crystallites. 

In the case that the Y=0.5 and 0.75 samples also underwent reduction to base oxides and 

metallic Co and Fe, as in the case of the Y=0 sample, it would make sense that increasing the 

amount of Fe on the B site would decrease the CO production onset temperature, because CO2 

activation is presumed to be a key step on the conversion of CO2 to CO, and CO2 dissociative 

chemisorption is preferred on Fe than on Co single crystals [137]. Furthermore, other studies 

have determined that reaction rates for the RWGS reaction are faster on Fe than Co [156, 157]. 

The Y=0.75 perovskite exhibited a different CO-production pattern with two evident peaks in the 

range of 500 to 750 °C possibly due to a phase change or phase segregation on the material upon 

its re-oxidation with CO2. Due to its increased stability, the Y=1 sample was the least likely to 

undergo crystalline phase changes during the H2-reduction step. Presumably, less energy is 
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required to re-oxidize the oxygen vacant structure (reaction II) as opposed to re-oxidizing 

reduced phases (metallic Co, and reduced layered perovskites) as has been seen before in Co-

based perovskites [45], as a consequence, the CO production onset temperature is ~ 200 °C 

lower than in the Y=0, 0.5 samples and ~ 50 °C lower than in the Y=0.75 sample. 

4.3.2 Isothermal RWGS-CL Using La0.75Sr0.25FeO3 

4.3.2.1 Reaction Rates and Changes in Oxygen Stoichiometry. The sample with Y=1 

was able to produce CO at the lowest peak temperature (550 °C, Figure 4.3), which constituted a 

decrease of 300 °C with respect to our previous results [45] and of at least 250 °C with respect to 

other similar processes that without H2 use, also achieve conversion of CO2 on the oxygen 

vacancies of metal oxides [109, 111-114]. Five cycles of isothermal RWGS-CL were studied on 

the Y=1 sample, to evaluate the structure stability, CO yield and selectivity. Figure 4.4 shows the 

normalized flows of H2 and CO2 and the H2O and CO produced on every reaction cycle. The 

areas representing the production of H2O were larger than the area of CO produced, which 

suggested that more oxygen vacancies were formed during the reduction than filled during the 

CO2 conversion step. 

Quantification of H2O and CO production is presented in Figure 4.5 (primary vertical 

axis). The CO or H2O amount term is defined as the moles of CO or H2O formed per each mole 

of perovskite. The H2O amount is representative of the formation of oxygen vacancies (δ, 

reaction 2.1) and the CO amount describes the re-oxidation of the oxygen vacancies on the 

perovskite (reaction 2.2). For the first cycle, the H2O amount is almost twice as much (41 mol 

H2O/ mol perovskite) as for the rest of the cycles. Starting from cycle two, it remains constant at 

~28 mol H2O/ mol perovskite. The difference from the first cycle to the rest was presumed to be 

caused by oxygen adsorbed in the surface of the perovskite during the high-temperature O2 
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treatment. Possibly, ~ 0.065 mol O2/ mol perovskite could have been adsorbed in the perovskite 

surface, which could react with H2 forming ~0.13 mol H2O/ mol perovskite during the reduction 

on the first cycle. This O2 adsorbed (0.065 mol O2/ mol perovskite) is equivalent to 6% of an O2 

monolayer on the perovskite surface. With this assumption, the δ formed during each cycle can 

be considered as constant, demonstrating that δ on the Y=1 sample was strongly dependent on 

the reduction time. Also, it is important to note that the H2O amount term remained always 

below 0.5 mol H2O/ mol perovskite, suggesting that the perovskite remained in its original 

crystalline structure.  

The CO formation rates for each RWGS-CL cycle (secondary vertical axis) from our 

current and previous study are also shown in Figure 4.5. In the current study, the CO production 

rates increased in the first cycles and remained roughly constant after the second cycle. The rates 

of CO formation for the third, fourth and fifth cycle are 69.57, 77.15 and 73.09 µmol CO /grams 

of Perovskite/ min respectively, and the deviation was determined as 4 µmol CO /grams of 

Perovskite/ min. In comparison to our previous study, CO formation rates (after stabilization on 

the second cycle) when Co was reduced in the La0.75Sr0.25CoO3 were only ~5% higher than with 

the La0.75Sr0.25FeO3 (after stabilization on the third cycle) even though the temperature was 

300°C higher in the case of Co [45]. Additionally, upon the H2-reduction step, more Co is 

available than oxygen vacancies on the La0.75Sr0.25FeO3 surface, as can be interpreted by 

evaluating the calculations of mol H2O/ mol perovskite in section 4.3.1. These results indicated 

that the reactivity of the Fe-based samples with CO2 is higher than with the Co-based samples.  

4.3.2.2 Role of Oxygen Vacancies on CO2 Adsorption. For each cycle, the amount of 

H2O produced was higher than the amount of CO produced. The CO production increased with 

cycle number until it stabilized at the third cycle. A detailed analysis of the oxygen stoichiometry 
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changes that the perovskite undergoes throughout the cycles is presented in Figure 4.6. Different 

arguments have been proposed on the oxygen stoichiometry of the Fe-rich La1-XSrX(Co,Fe)O3 

system. A previous study [88] concluded that La0.6Sr0.4CoY-1FeYO3 was stoichiometric (for 

Y=0.9, 0.8, 0.7), whereas Tai et al. [158] measured the La1-XSrXCo0.2Fe0.8O3 close to 

stoichiometric at X=0.4 and that the stoichiometry increases with La content. Therefore, in our 

calculations, we have assumed that the perovskite is initially stoichiometric (δ=0) with respect to 

its oxygen content. The 3-δ amounts represent the extent of the oxygen non-stoichiometry of the 

perovskite at the end of either the H2-reduction, where the oxygen vacancies are created 

(diagonal blue stripes) or at the end of the CO2-conversion step, where the oxygen vacancies are 

refilled (red bars). In the first 3-δ value presented, even though the H2O amount calculated was 

0.41 mol H2O/ mol perovskite only δ = 0.28 is considered as the amount of oxygen vacancies 

produced.  

The oxygen stoichiometry of the perovskite did not return to its originally oxidized state 

after each cycle (Figure 4.6). This indicated that the oxygen vacancies formed during each 

reduction step are not completely re-filled in the following CO2 conversion step. In other words, 

the accumulated oxygen deficiency on the perovskite increases on each cycle, because during 

each reduction step the same amount of oxygen is removed (~ 0.28 mol O /mol perovskite) but a 

smaller amount of vacancies are re-filled by CO2. It is expected, due to the high structural 

stability of the Fe-based perovskites, that this discrepancy would eventually be negligible, and 

the exchanged oxygen and the rates would be consistent for further cycles. The presence of 

oxygen vacancies on the surface was hypothesized to help in a more rapid CO2 reaction process, 

which is supported by increasing CO2 adsorption strength with increasing vacancies. A 

computational collaborator studied the effect of the extent of oxygen vacancies (δ) on the 
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adsorption strength of CO2 on the La0.75Sr0.25FeO3 perovskite surface. It was found that the 

adsorption strength increases with increasing oxygen vacancies. The experimental and 

computational results suggest that the driving force to break the CO-O bond increases with δ, 

resulting in more CO produced.  

4.3.2.3 Crystalline Structure Stability. XRD of the Y=1 perovskite throughout the 

RWGS-CL cycles (Figure 4.7) showed that the structure remains stable as a single-phase 

orthorhombic powder. The intensity of the diffraction lines decreased after the first reduction 

possibly due to a decreased crystallinity as a consequence of the H2-treatment. Also, the 

diffraction lines of the sample shifted towards higher 2θ angles, causing a contraction in the 

lattice parameters and a decrease in the cell volume (Table 3.2). Upon re-oxidation with CO2, the 

intensity of the diffraction lines increased to nearly the same intensity as the fresh sample and 

shift back towards lower 2θ angles. These results indicated that the perovskite returned to nearly 

its original crystalline structure at the end of the cycles. This suggests that the RWGS-CL on the 

Y=1 sample could be recyclable beyond the 5 cycles tested here. The crystallite size was 

determined by the Scherrer equation using K=1. After the first reduction, the perovskite 

increases its crystallite size by 10%, and at the end of the last cycle, it displays another 10% 

increment, showing that after five RWGS-CL cycles, the sample has only incremented its 

crystallite size by ~20%. 

4.3.2.4 Selectivity Towards CO. To determine the selectivity of the Y=1 sample in the 

RWGS-CL process towards reaction (2.2) as opposed to reaction (4.1), the combustion of the 

deposited C(s) was quantified as 4.47e-3 mol CO2 /mol perovskite, then, the CO2 desorbed after 

the first conversion cycle was determined to be 5.74e-4 mol CO2 /mol perovskite. The 3.89e-3 mol 

CO2 /mol perovskite difference between the two experiments represents the CO2 formed only 
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due to deposited C(s) combusting with O2. This number is two orders of magnitude lower than 

the moles of CO produced per moles of Perovskite during the first cycle of RWGS-CL. The 

selectivity of the process towards reaction (2.2) was calculated using the average 0.12 mol CO2 

/mol perovskite produced in the first cycle of the RWGS-CL (Figure 4.5) divided by the 3.89e-3 

mol CO2 /mol perovskite combusted from the deposited C(s). The process is 30.9 times more 

selective towards reaction (2.2) than towards reaction (4.1). This represents an advantage over 

CO2 conversion on Fe-based spinels, in which selectivity towards CO was found to be between 1 

and 1.8 [52]. 

4.4 Summary 

Four Sr- and Fe- doped LaCoO3 (La0.75Sr0.25Co1-YFeYO3−δ with Y = 0, 0.50, 0.75, and 1) 

were synthesized and studied for their properties for possible use in the RWGS-CL process that 

converts CO2 to CO. Temperature-programmed experiments determined that the Y=1 sample had 

the ability to convert CO2 to CO at the lowest temperature (550 °C). Also, at this temperature, 

the H2-reduction of the sample does not decompose the perovskite into base and metal oxides. 

The RWGS-CL was tested for five cycles on the La0.75Sr0.25FeO3 isothermally at 550 °C, which 

represents a ~300 °C decrease in the CO2 conversion to CO when compared to our previous 

studies and similar processes. Upon quantification of the H2O and CO amounts produced on each 

cycle and analysis of DFT-calculated CO2 adsorption energies as a function of oxygen vacancies 

(not shown here), it was concluded that δ in the perovskite is the driving force to break the CO-O 

bond and re-oxidizing the La0.75Sr0.25FeO3−δ sample. Post-reaction XRD studies showed that the 

sample retains its orthorhombic structure throughout the cycles. The conversion of CO2 to CO 

was found to be two orders of magnitudes higher than its decomposition to C and O2, therefore, 

it was concluded that the decomposition of CO2 on the perovskite surface is negligible. The low 
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conversion temperature of CO2 while achieving competitive CO production rates and the 

temperature integration of the process, make for the RWGS-CL process a plausible technology 

for the formation of C1 feeds, if a renewable hydrogen source is used.  



www.manaraa.com

	

	 64 

 
 

Figure 4.1 X-ray diffraction patterns of the La0.75Sr0.25Co(1-Y)Fe(Y)O3 powders. The Y=0 and 
Y=0.5 samples possessed a predominantly cubic structure with traces of Co3O4 (*) (Reference 
03-065-3103). The Y=0.5 sample also exhibited a mixture of cubic (dotted pink) and 
rhombohedral (dotted black) diffraction lines. The Y=0.75 sample had a phase mixture of 
orthorhombic perovskite and Fe3O4 (o) (Reference 00-019-0629). The Y=1 sample had a single-
phase orthorhombic structure. 
 
 

 
 

Figure 4.2 Temperature-programmed reduction of La0.75Sr0.25Co(1-Y)Fe(Y)O3 by 10% H2/He. The 
profiles are normalized with respect to the La0.75Sr0.25CoO3 (Y=0) sample. 
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Figure 4.3 Temperature-programmed oxidation of La0.75Sr0.25Co(1-Y)Fe(Y)O3 under 6.7% CO2/He 
after an isothermal reduction at 550 °C for 30 min by 10% H2/He. The profiles are normalized 
with respect to the La0.75Sr0.25CoO3 (Y=0) sample. 
 

 

 
 

Figure 4.4 Five cycles of RWGS-CL on 76.1mg of La0.75Sr0.25FeO3 at 550 °C. Time on stream of 
H2 and CO2 flow and H2O and CO production.  
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Figure 4.5 RWGS-CL on La0.75Sr0.25FeO3 at 550 °C. The molar ratios of H2O and CO generated 
in each cycle (left axis) and CO production rates (right axis) are showed. The blue bars (diagonal 
stripes) represent the amount of H2O formed (mol H2O/mol perovskite) on each reduction step 
under 10% H2/He for 20 min. The red bars (solid) represent the amount of CO formed on each 
oxidation step (under 6.7% CO2/He). CO production rates from this study (La0.75Sr0.25FeO3 at 
550 °C, diamond markers) are compared to the rates from our previous study (La0.75Sr0.25CoO3 at 
850 °C [45], circle markers) on the secondary y-axis. The first oxidation in the cycle experiment 
was performed three times and the rate standard deviation was 4 µmol CO /grams of perovskite/ 
min. 
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Figure 4.6 Oxygen stoichiometry variations on the La0.75Sr0.25FeO3 during the RWGS-CL at 550 
°C. The sample was taken as fully oxidized (δ=0) initially. The bars represent the oxygen 
stoichiometry (3-δ) of the sample after each reduction step (blue horizontal stripes) and 
conversion step (solid red). 
 
 

 
 

Figure 4.7 X-ray diffraction patterns of the La0.75Sr0.25FeO3 powder throughout the RWGS-CL 
cycles. The powder exhibits a single-phase orthorhombic crystalline structure when it is fresh, 
after the first H2-reduction and at the end of the fifth cycle. The patterns are normalized with 
respect to the fresh sample. 
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Table 4.1 Surface area and crystallographic parameters of La0.75Sr0.25Co(1-Y)FeYO3. 
 

Y Position of main 
diffraction line (2θ) 

Lattice parameters (Å) Unit cell 
volume (Å3) 

BET surface 
area (m2/g) 

a b c 
0 (110) 32.96 3.84 -- -- 56.81 1.32 

0.5 (110) 32.58* 3.87 -- -- 57.91 0.54 
0.75 (020) 32.54 5.47 5.50 7.78 233.72 0.59 

1 (020) 32.21 5.53 5.55 7.84 240.62 0.41 
* Lattice parameters and Miller indices calculated from the cubic diffraction lines. 
 
 
Table 4.2 Lattice parameters changes of the La0.75Sr0.25FeO3 sample throughout the RWGS-CL 
cycles. 

 

Sample Position of (020) 
diffraction line (2θ) 

Lattice parameters (Å) Unit cell 
volume (Å3) 

Crystallite 
size (Å) a b c 

Fresh 32.33 5.53 5.53 7.80 238.53 395.8 
After 1st H2-

reduction 32.40 5.48 5.55 7.82 237.71 436.7 

After 5 cycles 32.21 5.53 5.55 7.84 240.64 481.8 
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CHAPTER 5: MORE CU, MORE PROBLEMS: DECREASED CO2 CONVERSION  
 

ABILITY BY CU-DOPED LA0.75SR0.25FEO3 PEROVSKITE OXIDES4 
 

5.1 Introduction 

In 2013, the atmospheric concentration of carbon dioxide reached 400 ppm [159], and 

emissions are expected to increase at least 20% by 2030 [160]. The world dependency on fossil 

fuels is steadily leading to their depletion while consumption trends are bound to increase, 

particularly because the development of technologies that can produce green fuels is still 

ongoing. An alternative to ensure a continuous supply of liquid fuels is to close a synthetic 

carbon cycle by transforming the highly available carbon dioxide to fuels. 

The most popular technology for CO2 mitigation is Carbon capture and storage (CCS). 

With around 14 operational plants worldwide, the projected capacity for the large scale processes 

is 0.106 Gt per year [161]. The main drawback of this process is the availability of sequestration 

sites, which are also a source of concern due to potential leakage [162-164]. Carbon capture and 

utilization (CCU) is an alternative to simultaneously decrease CO2 emissions and ensure a 

continuous supply of carbon-based products including liquid fuels and chemicals [48, 165], 

while avoiding the drawbacks of CCS. But, with such an excessive amount of CO2 available, 

only strategies that achieve high-volume products such as fuels would potentially impact CO2 

emissions noticeably. For example, use of CO2 for methanol production would decrease CO2 

emissions by 0.26% at most, even though methanol is among the top ten commodity chemicals 

																																																								
4 Reprinted with permission from Y. A. Daza, D. Maiti, B. J. Hare, V. R. Bhethanabotla, and J. N. Kuhn. 
More Cu, more problems: Decreased CO2 conversion ability by Cu-doped La0.75Sr0.25FeO3 perovskite 
oxides. Surface Science. In press. Copyright © 2015 Elsevier 
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produced [10]. The challenge is that CO2 conversion requires hydrogen atoms, which directly or 

indirectly comes from water or methane. Since, as an example, methane steam reforming 

produces at least 9 t of CO2 per t of H2 produced [166], implementation of carbon-free hydrogen 

sources is required to impact CO2 emission amounts. As a result, the cost of renewable hydrogen 

is key economic parameter in many CO2 conversion processes [139]. 

The most energy efficient way to convert CO2 using solar-assisted processes is reducing 

it to CO for liquid fuels synthesis [42]. Previously, we developed the Reverse Water Gas Shift 

Chemical Looping (RWGS-CL) process for the conversion of CO2 to CO using mixed metal 

oxides as the redox material. Being a looping cycle process, the RWGS-CL inherently separates 

the reaction products (CO and H2O), decreasing potential deactivation of the material and the 

possibility of side reactions [45, 46]. Additionally, because the reactions taking place are 

stoichiometric, excess H2 is not required. In the first step of the process, a stream of hydrogen 

reduces the metal oxides. In the second step, CO2 is flowed to the reactor where it is converted to 

CO while one O atom is incorporated into the metal oxide structure. Perovskites oxides (ABO3) 

have been the material of focus due to their ability to accommodate oxygen vacancies in their 

structures. Oxygen vacancy formation depends on gas environment, temperature, and the metals 

on the A and B site of the oxide material [56, 58, 149, 167].  

Previously, we used cobalt in the B site of the perovskites because it facilitates the 

generation of oxygen vacancies [56, 85] and stabilized metallic Co nanoparticles from the 

perovskite’s decomposition were re-oxidized by CO2 and CO was produced [45]. But, perovskite 

membranes with Co have proven unstable under demanding conditions [168-171], and 

particularly, Co-containing membranes suffer degradation due to contact with CO2 [172]. To 

improve stability [88, 149], Fe was incorporated onto the B site which allowed for the two steps 
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of the RWGS-CL process to be isothermal at 550 °C [46]. Other groups have also used Fe-based 

materials to achieve CO2 conversion in a Chemical Looping process with H2 as a demonstration 

fuel, but the reduction and conversion temperatures used were at least 700 °C [48, 50]. In 

addition to stability imparted by Fe, the CO2 conversion process may have also been improved 

by the increased CO2 chemisorption energies on Fe surfaces [137, 173]. Even though an 

isothermal process is an important achievement for requiring lower energy consumption, a 

decrease in the process temperature to the ranges of Fischer-Tropsch (220 to 350 °C [174]) and 

methanol synthesis (210 - 260 °C [7, 115]) is desired. 

In the present study, the doping of Cu onto the B site of Fe-based perovskite oxides is 

evaluated. Incorporation of small amounts of Cu into a La0.6Sr0.8(Fe,Co)O3 perovskite, has 

shown increased oxygen vacancy formation when compared to un-doped materials [167]. Also, 

copper surfaces and stabilized copper nanoparticles have been studied for their CO2 conversion 

properties in electrochemistry and photocatalysis [175-178]. Moreover, in methanol 

dehydrogenation reactions, CO production has been observed as low as 200–260°C in Cu-doped 

perovskites [179] and high CO formation has been achieved from CO2 hydrogenation on Cu 

oxides supported on zinc, aluminum or silicon oxides [141, 180, 181]. An added advantage of 

incorporating Cu on the B site of the perovskite is related to its availability. There is 

approximately 100 times more Cu than Co in the world [182, 183], which is necessary to 

guarantee the continuous conversion of CO2 and ability to replace the perovskite material when 

needed. 

La0.75Sr0.25Fe1-YCuYO3 perovskites, (Cu100*Y, with Y=0, 0.10, 0.25, 0.50, 0.75 and 1) 

were synthesized and characterized. Select reduced materials were then tested for their CO2 

conversion capabilities. Incorporation of Cu into the B site of the La0.75Sr0.25FeO3 perovskite 
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inhibited the conversion of CO2 when Cu is in high proportions. However, when Cu is doped in 

small amounts, CO formation occurred with a similar onset temperature as the Fe perovskite, 

which indicated negligible catalytic effect of the Cu doping. Moreover, the Cu doping decreased 

the total amount of CO formed and the stability of the perovskite. Complementary computational 

studies determined the oxygen vacancy formation energies as a consequence of A and B site 

composition and oxygen vacancy extent (δ) and correlated to experimental reducibility trends. 

5.2 Materials and Methods 

5.2.1 Synthesis of Oxide Powders 

The Pechini method [97] was used to synthesize six perovskites: La0.75Sr0.25Fe1-YCuYO3 

where Y = 0, 0.1, 0.25, 0.5, 0.75, 1.0. Citric acid (Aldrich >99.5%) was dissolved in deionized 

water to approximately a 2 M aqueous solution. La(NO3)3 (Aldrich 99.9%), SrCO3 (Aesar 

99.994%),  Fe(NO3)3 (Aldrich ACS, grade 98+%), Cu(NO3)2 (Aesar, 98%) were dissolved into 

the citric acid (CA) solution followed by a 2 h stirring period at 60 °C to ensure a homogenous 

mix. Ethylene glycol (Aldrich, >99%) was then added to initiate polyesterification and the 

mixture was stirred 7 h at 90 °C to decrease water content and form a viscous sol-gel. All 

reagents were measured to satisfy an La:Sr:B:Citric Acid:Ethylene Glycol mole ratio of 

0.75:0.25:1:10:40 [78] with the corresponding Cu:Fe ratios varying to achieve each desired 

composition. Lanthanum nitrate and cobalt carbonate were 6 and 4% hydrated, respectively.  

The gel was transferred into an alumina crucible and charred in air at 450 °C (at 25 

°C/min) in a Vulcan 3-550 furnace for 2 h to evaporate any remaining water and produce an 

amorphous powder. The resulting powder was crushed and calcined in air at 950 °C (at 25 

°C/min) for 6 h. The perovskites were labeled Cu0-100 with respect to their copper content.  
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5.2.2 XRD 

Diffraction patterns were collected at room temperature in a Bruker X-Ray 

Diffractometer with Cu Kα (λ = 0.154 nm) from 20 to 100 2θ°. A step size of 0.0102 2θ° was 

used with 1.2 s per step. 

5.2.3 Reaction Experiments 

Approximately 75 mg of perovskite packed between glass wool in an U-tube quartz 

reactor were used in each experiment. All experiments were performed under a constant total 

flow rate of 50 sccm and a heating rate of 10 °C/min unless otherwise stated. All gases were 

purchased from Airgas in ultra-high purity (UHP) grade. The experiments were monitored by an 

MKS Cirrus mass spectrometer (MS). The reactor system used and species quantification 

methods were previously described [45, 46]. 

5.2.3.1 Temperature-Programmed Oxygen Vacancy Formation. Upon the 

stabilization of the signals in the MS, the samples were heated to 950 °C in He. The temperature 

was maintained until stabilization of the signals. The generation of oxygen vacancies was 

monitored via the m/z = 32 (O2) signal.  

5.2.3.2 Temperature-Programmed Reduction (TPR). Upon the stabilization of the 

signals in the MS, the environment was changed from He to 10% H2/He. Again, after 

stabilization of the signals, the samples were heated to 950 °C. The heating was maintained at 

this temperature until the signals remained stable. Water formation was monitored via the m/z = 

18 (H2O) signal.  

5.2.3.3 Temperature-Programmed Oxidation with CO2 (TPO-CO2). Upon reduction 

at 450 °C for 30 min under 10% H2/He, the samples were cooled under He to <100 °C. After 

stabilization of the signals, 10% CO2/He was flowed to the samples for at least 15 min (or until 
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the signals remained stable). Next, the samples were heated to 950 °C and the temperature was 

held until the MS signals remained stable. 

5.3 Results 

Thermodynamic properties of oxygen vacant metal oxides depend on the constituent 

metals and extent of oxygen vacancies (δ) formed during the reduction period [93]. Therefore, 

multiple studies have chosen oxygen vacancy formation energies, amongst others, as descriptors 

to predict the feasibility and potential efficiency of H2O and CO2 thermochemical splitting to H2 

and CO respectively, on different metal oxides [92, 93, 184]. 

Deml et al. [184, 185] claim the existence of an ideal range of oxygen vacancy formation 

energies for which perovskites are thermodynamically favored to re-fill their vacancies with 

CO2. High Sr-substitution on the A site is undesired because it increases the oxygen non-

stoichiometry of the perovskite [126, 133, 158, 186] and therefore only low Sr2+ substitution was 

studied.  This substitution induced changes in the oxidation state of the B site metal; as a 

consequence, the oxygen vacancy formation energies were enhanced [56, 86, 167, 186]. 

Substitution of the B site metal was still necessary to optimize the oxygen vacancy formation 

energy. Presence of copper in the B sites favored the formation of oxygen vacancies when 

compared to Fe perovskites. High Cu-substitution, however, lead to the decomposition of the 

perovskite, which is described in detail next. 

5.3.1 Effect of Cu Addition in the Crystalline Structure, Oxygen Vacancies 

Formation and Reducibility of the Samples 

The effect of Cu doping on the diffraction patterns and perovskite crystalline structure are 

shown in Figure 5.1 and Table 5.1. The Cu0 sample only exhibited a single-phase orthorhombic 

(O) perovskite with a cell volume of 238.34 Å3. Small dopings of Cu (Cu10), decreased the 
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orthorhombic unit cell volume to 237.84 Å3, as expected due to the smaller size of Cu [154] 

compared to Fe. This effect was also observed when comparing the main diffraction line of the 

orthorhombic phases (020), which increased from 32.33 2θ ° for Cu0 to 32.43 2θ ° for Cu10, due 

to unit cell size decrease. A small amount of cubic CuO was detected at 35.56 and 38.74 2θ °, 

with ~1% relative intensity lines in the Cu10 sample. 

In the Cu25 sample, the main diffraction line at 32.37 2θ ° was attributed to an 

orthorhombic (O) phase rich in Fe (cell volume 237.99 Å3). A secondary phase (88.6% relative 

intensity) appeared at 32.48 2θ °, possibly due to a tetragonal Cu-rich oxygen deficient phase, 

La0.75Sr0.25Fe1-YCuYO3-δ (T1) with a cell volume 454.13 Å3 (Figure 5.1 (b)). CuO was visible in 

higher proportions (~5% relative intensity) than on the Cu10 sample. The formation of the Cu-

rich T1, and CuO, was presumably due to the difference in ionic radii of Fe and Cu and the 

preference of Cu to exist in lower oxidations states than Fe inside the perovskite. In 

consequence, the O phase tolerated only small substitutions of Cu. 

The diffraction profile of Cu50 exhibited two secondary phases and CuO as impurity. 

The three main intensity lines are shown in the range 32.2 – 32.8 2θ ° (Figure 5.1 (b)). The main 

diffraction line (32.71 2θ °) was attributed to a tetragonal oxygen deficient A8B8O20 (T2) 

structure [187]. The orthorhombic, Fe-rich phase (92.2% relative intensity) is seen at 32.34 2θ °, 

a 0.01 2θ ° difference with respect to the Cu0 sample, suggesting that the incorporation of Cu 

into the structure is minimal, and the copper content in the structure was less than in the O phase 

of the Cu10 sample. The T1 phase (82.4% relative intensity) was also detected, with a main 

diffraction line at 32.55 2θ ° and a cell volume of 453.82 Å3. The decrease in its cell volume and 

the higher 2θ ° values for its main diffraction line, suggested that the Cu50_T1 phase was richer 

in Cu than the Cu25_T1. 
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The XRD profile of the Cu75 sample was similar to that of the Cu25. The main 

diffraction line (32.35 2θ °) was attributed to the O phase with a unit cell volume of 238.25 Å3. 

The Cu75_O phase shifted to lower 2θ ° values and exhibited a smaller cell volume, suggesting 

that this phase was richer in Fe than the Cu25_O phase. The T1 phase was also evident at 32.38 

2θ ° (94.5 % relative intensity) with a cell volume of 460.61 Å3. The Cu75_T1 phase was likely 

richer in Fe than the Cu25_T1 phase, as suggested by the T1 cell volume increase, and the shift 

in the diffraction pattern to lower 2θ ° values. The CuO lines had a relative intensity of ~6%, 

similar to the Cu25 sample. This finding was counterintuitive because the T1 and O crystalline 

phases on the Cu75 were richer in Fe than the phases found in the Cu25 sample. However, due to 

the favored thermodynamics for the inclusion of Fe vs. Cu on the B site, the similarity in the 

profiles for Cu25 and Cu75 suggested that in the Cu75 sample, a large proportion of Cu was in 

an amorphous phase, undetected by XRD. 

In the Cu100 sample, the structure returned to a single-phase profile with a main 

diffraction line at ~ 32.91 2θ °, characteristic of a tetragonal structure similar to T1 but without 

Fe on the B site. The diffraction profile shifted to higher 2θ ° values and decreased its cell 

volume to 453.49 Å3. The Cu100 also had multiple unidentified diffraction lines. The most 

intense line (13% at 37.89 2θ °) was observed in a similar position to the most intense diffraction 

line of the highly unstable tetragonal SrCu2O2 structure (reference 00-38-1178). The next most 

intense unidentified diffraction lines on the Cu25 XRD profile correspond to 31.18, 31.26 and 

38.73 2θ ° with 6.8, 6.3 and 5.3% intensity respectively. These peaks could be attributed to an 

orthorhombic Sr14Cu24O41 structure, which is formed from the reaction of SrCu2O2 with O2 at 

temperatures higher than 300 °C [188]. The rest of the unidentified diffraction lines had relative 

intensities lower than 5%. 
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The oxygen vacancy formation profiles of the perovskites (Figure 5.2 (a)) and the oxygen 

vacancies formed, δ (Figure 5.2 (b)) were used to compare the samples in terms of reducibility. 

Overall, incorporation of Cu decreased the stability of the perovskite. The Cu0 sample exhibited 

enhanced stability when compared to the Cu-doped samples due to its less favored oxygen 

vacancy formation energy. Desorption of surface oxygen likely contributed to the profiles to a 

small extent. The profile of Cu10 demonstrated only one O2 formation area from 810 to 870 °C 

(peak at 860 °C) consistent with having only one perovskite phase (Figure 5.1). The Cu25 

sample, which initially possessed two main crystalline phases, produced 2.5 times more oxygen 

vacancies than the Cu10 sample, possibly due to oxygen vacancy formation and subsequent 

partial decomposition of the T1 structure, as suggested by post-reduction XRD (shown later). 

Decomposition of the samples to Cu2O was detected via red stains left on the reactors subsequent 

to the experiments, particularly in the samples with high Cu substitution. Even though, 

intuitively, the Cu25 sample was expected to initiate the formation of oxygen vacancies at lower 

temperatures than Cu10, the oxygen vacancies formation on the Cu25 sample occurred in the 

range of 810 to 900 °C (peak at 890 °C). This phenomenon was studied with DFT and will be 

discussed in section 5.3.3. 

The two areas in the profiles of the Cu50, Cu75 and Cu100 samples, correlate with the 

co-existence of multiple crystalline phases. Likely, for the Cu50 and Cu75 samples, the two most 

predominant phases (O and T1) formed oxygen vacancies and decomposed to other phases at 

higher temperatures. The T2 structure, is known to be stable in its oxygen deficient state [189]. 

The first oxygen vacancy formation area in the Cu50 and Cu75 samples peaked at approximately 

the same temperature (870 °C) and formed almost the same amount of oxygen vacancies, which 
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is consistent with the presence of similar crystalline phases. The second oxygen vacancy 

formation area was larger in Cu75 than in Cu50, as it is expected due to its increased Cu doping. 

The Cu100 sample also exhibited two oxygen vacancy formation areas, which could be 

attributed to decomposition of either the T3 or the unidentified phases. 

The reduction profiles of the samples, in the presence of a reducing agent (H2), changed 

with Cu content (Figure 5.3 (a)). The O atoms removed from each perovskite during the 

reduction period (Figure 5.3 (b)), correspond to the mol of H2O formed per mol of perovskite 

[46]. The Cu0 sample exhibited two reduction areas. The first one started at 350 °C and peaked 

at 550 °C. The smallest initial peak is likely formed during the reduction of the Fe4+ ions to Fe3+, 

while the second one (onset at ~500 °C) was formed due to reduction of Fe3+ ions. In the samples 

with both metals on the B site, the onset reduction and peak reduction on the first area decreased 

by 100 and 300 °C, respectively. 

The Cu10 sample had two low-temperature areas, the first from 250 to 350 °C potentially 

due to the reduction of Cu3+ and Fe4+ ions. The second reduction area (350 to 450 °C) was 

attributed to the reduction of the Fe3+ ions. The high temperature reduction area was larger in 

Cu0 than in Cu10 due to higher Fe content on the Cu0 sample, when compared to the Cu10 

sample. In general, the low and high-temperature reduction areas had a direct and inverse 

relation to Cu content, respectively (Figure 5.3(b)). The Cu75 and Cu100 samples reduce almost 

completely below 650 °C. The m/z=18 peak observed at ~850 °C on the Cu75 sample, was 

attributed to the reverse water gas shift reaction between previously adsorbed carbon dioxide and 

hydrogen.  

The samples with both Cu and Fe on the B site (Cu10, Cu25, Cu50, Cu75), exhibited 

lower onset reduction temperatures than the Cu100 and Cu0. This effect was a consequence of 
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the combined stability of Fe with the reducibility of Cu. The TPR profile for Cu100 seemed to 

undergo a lumped reduction below 550 °C. A characteristic that makes an oxide material ideal 

for RWGS-CL or thermochemical cycles, is to have tunable oxygen vacancies as a function of 

temperature. A lumped reduction such as the one suffered by Cu100 is difficult to control. More 

discrete profiles such as the Cu0 and Cu10 are desired due to the multiple reduction areas with 

different onset and peak temperatures. 

5.3.2 Effect of Cu Doping in the CO Formation Profiles of La0.75Sr0.25Fe1-YCuYO3 

Perovskites 

The effects of Cu doping on CO2 conversion characteristics for the Fe-based perovskite 

were investigated on samples with low doping of Cu (Cu10, Cu25). These samples were chosen 

due to their enhanced stability, as opposed to the high Cu-doped samples. The Cu0 sample was 

tested for comparison purposes. Prior to the temperature-programmed CO2 conversion, the 

samples were reduced at 450 °C under 10% H2/He for 30 min. This temperature was chosen 

because it was at the end of the low-temperature reduction area for the samples containing both 

Cu and Fe, and inside that area for the Cu0 sample. 

During the isothermal reduction period, water was formed, which was quantified as mol 

of H2O formed per mol of perovskite. The reduction increased with copper content. The Cu0, 

Cu10 and Cu25 samples formed 0.38, 0.44 and 0.65 mol of H2O per mol of perovskite, 

respectively (Table 5.2). These values suggested that the main phases of the Cu0, Cu10 and 

Cu25 samples only underwent minor reductions. Post-reduction XRD (Figure 5.4) confirmed 

that the samples retained their main crystalline structure. The reduced Cu10 and Cu25 samples 

exhibited increased crystallinity, as evident by the disappearance of the amorphous shoulder at 

low 2θ ° values, and the narrower main diffraction lines. The T1 phase was still present although 
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the main diffraction line decreased in relative intensity to 63.3%. Both phases were oxygen 

deficient, evident from the shift of XRD profiles to lower 2θ ° values. CuO was reduced to Cu0 

on the Cu10 and Cu25 samples. The Cu0 sample also underwent a reduction, as noted by the 

appearance of metallic Fe at ~ 45 2θ °. 

The onset CO production temperature was ~450 °C for Cu0 and Cu10 (Figure 5.5) and 

the peak CO production occurs at 540 and 570 °C for Cu10 and Cu0, respectively. The similar 

onset temperatures suggested that Cu did not contribute to a catalytic effect. CO formation was 

not detected on the Cu25 sample. Expressly, the amount of O removed from the perovskites 

increased with Cu doping, and the CO production decreased with Cu. Also, the Cu10 sample 

only re-oxidized 13.6% of its oxygen vacancies, while the Cu0 sample re-oxidized 23.7% of the 

oxygen vacancies formed during the isothermal reduction (Table 5.2). These findings are not 

consistent with previous results, which showed that oxygen vacancies are the primary driving 

force for the CO2 bond breaking in La0.75Sr0.25FeO3 samples [46] and will be discussed in section 

4.4. The decreased CO production on the Cu doped samples and the lower percentage of re-

oxidized vacancies indicated that the RWGS-CL would be less favored than on the Cu0 sample, 

therefore, repeated cycle studies were not performed.  

It is important to mention that in CO hydrogenation experiments, others have shown that 

introducing Cu ions into the LaMnO3 perovskite promotes the formation of methanol from CO 

hydrogenation [190]. This suggested that Cu doping could promote the conversion of CO to 

other methanol on the La0.75Sr0.25FeO3 perovskite. However, m/z = 31 was tracked during the 

temperature-programmed CO2 experiments and no formation of methanol was detected, this is 

due to the H2 and CO2 remaining separated during the looping-type experiment. 
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5.4 Discussion 

The inhibition of CO formation during the temperature-programmed CO2 oxidation 

experiments was directly proportional to Cu content. In the following sections, we investigate 

whether the effect was due to the changes in the Cu phase (Cu outside the perovskite) or due to 

the effect of B-site Cu substitution inside the perovskite structure.  

5.4.1 Effect of Cu Containing Secondary Phases 

CuO was found on the XRD profiles of the Cu10 and Cu25 samples in 1 and 5% relative 

intensities, respectively. The detail that relative intensities was a factor of 5 different whereas the 

Cu amount in the sample was factor of 2.5 different suggested the fraction of Cu in secondary 

phases was increasing with Cu amount in the sample. An impurity rich in Cu initially points to 

the conclusion that the perovskite was B-site deficient, but B-site cationic vacancies are not 

thermodynamically favored [56] and therefore, are rarely seen. Ge et al. [191] determined that 

high concentrations of B site vacancies on (Ba0.5Sr0.5)(Co0.8Fe0.2)yO3−δ membranes induced the 

appearance of A-metal oxides near the membrane surface, detected by FTIR but undetected by 

XRD. Previous efforts [149] found that, as Fe content decreased in La0.6Sr0.4CoyFe1−yO3−δ, the 

surface composition of the oxides was enriched in La and Sr. An increased La and Sr 

concentration near the surface, presumably in the form of  base metal oxides, could highly favor 

the adsorption of CO2 as carbonate [192, 193] as opposed to breaking the C-O bond on the 

oxygen vacancy site of the perovskite oxide. To investigate potential carbonate adsorption, FTIR 

was performed on the Cu25 sample with and without CO2 adsorption. A sample was treated to an 

isothermal reduction in H2/He for 20 min, He flushing for 20 min, and subsequent CO2 flow for 

20 min at 550 °C. Vibrations in the carbonate regions decreased in intensity (and some even 

disappeared) when compared to the same sample treated in He at 550 °C for the same period of 
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time where some carbonates from the atmospherically adsorption were not removed. This 

comparison suggested that carbonate formation was not the issue.  

In addition to surface enriched oxides of La and Sr, Cu phases must be present. In this 

study, the samples were reduced for 10 minutes more than in previous efforts [46], therefore, 

metallic Fe0 was also noted on the reduced La0.75Sr0.25FeO3. This Fe0 could have enhanced CO 

formation, due to the enhanced dissociative chemisorption of CO2 in Fe [137] surfaces. 

Dissociative chemisorption of CO2 has been proven highly unfavorable on Cu surfaces [137, 

173, 194, 195]. Therefore, higher amounts of metallic Cu present on the Cu25 sample could be 

inhibiting CO production due to highly electronegative localized CO2 adsorption on Cu 

nanoparticles, which is more thermodynamically favored than CO2 dissociation. But, CO2 

conversion to CO has been achieved on Cu vapor-deposited on TiC(001) [196]. In both Cu-

containing samples (Cu10 and Cu25) tested for CO2 conversion, the isothermal H2 treatment 

reduced the CuO phase to metallic Cu0, which might be sintering upon reduction higher than 400 

°C [90].  

To investigate the effect of the reduced Cu0 on CO formation, five consecutive cycles of 

RWGS-CL are studied (similar to previous studies [46]) on 5% Cu on La0.75Sr0.25FeO3 

synthesized by wet impregnation. The rates of CO formation on 5% Cu / La0.75Sr0.25FeO3 were 

compared to those of La0.75Sr0.25FeO3 (Table 3). CO formation was not inhibited by additional 

Cu, and the formation rates were very similar to those of La0.75Sr0.25FeO3. Although the 

temperatures were much lower than the synthesis temperature (550 vs 950°C), it is possible that 

the decrease with the 5% Cu / La0.75Sr0.25FeO3 was associated to Cu migration into the perovskite 

oxide. Regardless, this comparison indicated that excess amount of Cu external to the perovskite 

oxide did not inhibit CO production. 
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5.4.2 Effects of B-site Doping of Cu into the La0.75Sr0.25FeO3 Perovskite 

Experimental studies (Figures 5.1 and 5.2) showed that increasing Cu content increased 

the oxygen vacancies formation abilities of the La0.75Sr0.25Fe1-YCuYO3 materials. Even though the 

Cu0 and Cu-doped perovskites remained stable in the reduced state (Figure 5.4), the Cu-doped 

materials have a lower oxygen affinity than the Cu0 samples (as suggested by DFT, not shown 

here), which lowered the thermodynamic drive to re-fill the oxygen vacancies for the Cu10 and 

Cu25 samples, than in the Cu0 sample, particularly with a poor oxidant (CO2 [123]). Nakamura 

et al. [126, 133] studied similar materials (La1−xSrxCoO3−δ) and found that increasing the 

perovskites reducibility, decreases its ability to refill its oxygen vacancies. These results and 

findings contrasted significantly from results with a less reducible perovskite oxide. For the 

La0.75Sr0.25FeO3 sample (Cu0), production of CO increased (0.02, 0.13, 0.15 mol CO/mol 

La0.75Sr0.25FeO3) with increasing reduction in the perovskite structure (0.13, 0.36, 0.71 mol 

H2O/mol ABO3 respectively). In these experiments, various amounts of H2O were formed during 

isothermal reduction (at 3, 13.6 and 30 min respectively) under 10% H2/He. This comparison, on 

conjunction with the Cu supported on La0.75Sr0.25FeO3 (Table 5.3) confirms that the stability of 

the reduced material is center to the low levels of CO production from the Cu containing 

samples.  

5.5 Conclusion 

The effects of Cu doping in Fe-based perovskites on the conversion of carbon dioxide to 

carbon monoxide were investigated. Six materials La0.75Sr0.25Fe1-YCuYO3 with Y = 0, 0.1, 0.25, 

0.5, 0.75 and 1, (labeled Cu100*Y) were synthesized, characterized, and tested for their 

reduction and oxygen vacancies formation capabilities. Select reduced materials were tested for 

their ability to convert CO2 to CO. Cu addition reduces the stability of the perovskite and 
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promotes the formation of oxygen vacancies. DFT calculations (not shown here) confirmed that, 

for the Cu0, Cu10 and Cu25 samples, the oxygen vacancies formation energies depend on both 

the Cu content and the extent of oxygen vacancies formed (δ). Only the perovskites with lowest 

Cu substitution (Y=0.1) and no Cu (Y=0) were able to produce CO. Results indicated that 

incorporating Cu into the perovskite structure induced a loss of oxygen affinity and decreased the 

ability of the perovskite to re-oxidize. 
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Figure 5.1 X-ray results. (a) X-ray diffraction patterns of the Cu-doped samples. Cu0 to Cu75 
exhibit predominantly orthorhombic (O) crystalline structures (reference 00-035-1480). From 
Cu10 until Cu100, cubic CuO ( ) was also found (reference 00-001-0428). The Cu100 sample 
exhibited a tetragonal pattern with at least one unidentified crystalline structure ( ). (b) Main 
diffraction lines from 31 to 34 2θ °. The Cu25 and Cu75 samples exhibit the O phase and a 
secondary phase (T1), possibly a tetragonal La0.75Sr0.25Fe1-YCuYO3-δ. The Cu50 sample exhibits 
three main phases: O, T1 and a tetragonal A8B8O20 structure (T2, reference 01-083-0366). The 
Cu100 sample exhibits a tetragonal La0.75Sr0.25CuO2.44 (T3, reference 00-046-0653. Profiles are 
normalized to most intense line.  
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Figure 5.2 TP-Ovac formation results. (a) Temperature-programmed oxygen vacancy formation. 
The m/z=32 signal was normalized with respect to He. (b) Quantification of the oxygen 
vacancies formed ((mol of O2 / 2) / initial mol P). For Cu50, Cu75 and Cu100, the solid bars 
represent the oxygen vacancies formed from 750 to ~900 °C and translucent bars represent the 
oxygen vacancies formed from 900 °C until the stabilization of the m/z=32 signal. The Cu10 
oxygen vacancy formation experiment was performed three times and the standard deviation was 
1.5e-3 mol of O2/2/ mol P. 
 
 

 

Figure 5.3 TPR results. (a) Temperature-programmed reduction of the samples under 10% 
H2/He. (b) Quantification of moles of water produced during the reduction normalized by the 
initial moles of perovskites. The solid bars represent water formation below 450 °C, the 
translucent bars represent the reduction above 450 °C. The solid bars increase in size with Cu, 
showing that Cu addition increases the reducibility of the samples at lower temperatures. 

 



www.manaraa.com

	

	 87 

 
Figure 5.4 XRD patterns after isothermal reduction at 450 °C in 10% H2/He for 30 min. Fresh 
patterns are repeated from Figure 5.1. All samples exhibited mainly an orthorhombic (O) 
crystalline structure. Other phases found: metallic Fe ( ), metallic Cu (∗) and CuO ( ). The 
profiles are normalized to the most intense peak. 

 

 

 
Figure 5.5 Temperature-programmed CO formation on Cu0, Cu10 and Cu25 (raw signals of 
m/z=28) after isothermal reduction at 450 °C in 10% H2/He for 30 min.  
 

 



www.manaraa.com

	

	 88 

Table 5.1 Abbreviations. 
 

Abbreviation Sample 
Cu0 La0.75Sr0.25FeO3 
Cu10 La0.75Sr0.25Cu0.10Fe0.90O3 
Cu25 La0.75Sr0.25Cu0.25Fe0.75O3 
Cu50 La0.75Sr0.25Cu0.50Fe0.50O3 
Cu75 La0.75Sr0.25Cu0.75Fe0.25O3 
Cu100 La0.75Sr0.25CuO3 

 
 
Table 5.2 Unit cell parameters of the perovskite phases for the fresh La0.75Sr0.25Fe1-YCuYO3 
samples as calculated from X-ray diffraction data. 
 

Sample 
Main diffraction 
line (2θ °) and 
intensity (%) 

Phase a (Å) b (Å) c  (Å) 
Cell 

volume 
(Å3) 

Cu0 32.33 (100%) Orthorhombic 5.53 5.53 7.80 238.34 
Cu10 32.43 (100%) Orthorhombic 5.53 5.50 7.82 237.84 

Cu25 
32.37 (100%) Orthorhombic 5.52 5.52 7.81 237.99 
32.48 (88.6%) Tetragonal_1 10.94 10.64 3.90 454.13 

Cu50 
32.71 (100%) Tetragonal_2 10.79 10.79 3.90 454.28 
32.34 (92.2%) Orthorhombic 5.50 5.54 7.85 239.48 
32.55 (82.4%) Tetragonal_1 10.81 10.78 3.89 453.82 

Cu75 32.35 (100%) Orthorhombic 5.50 5.53 7.82 238.25 
32.38 (94.5%) Tetragonal_1 10.85 10.85 3.91 460.61 

Cu100 32.91 (100%) Tetragonal_3 10.84 10.85 3.86 453.49 
 

 

Table 5.3 H2O and CO formation on the La0.75Sr0.25Fe1-YCuYO3 (Y=0, 0.10 and 0.25) samples 
during the temperature-programmed oxidation with CO2 (CO formation) experiments. 

 
Sample (mol H2O/mol P) (mol CO/mol P) % of vacancies re-oxidized 

Cu0 0.38 0.09 23.7 
Cu10 0.44 0.06 13.6 
Cu25 0.65 -- -- 
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Table 5.4 Rate of CO formation at T = 550°C on the RWGS-CL process on La0.75Sr0.25FeO3 and 
Cu-supported La0.75Sr0.25FeO3 perovskite oxides. Only data after the third cycle is shown because 
it represents the rates upon stabilization. The first two reductions/oxidation cycles on the 5%Cu/ 
La0.75Sr0.25FeO3 sample were used to reduce copper oxide to metallic Cu0. Data from these two 
cycles were not considered to be representative of accurate oxygen vacancies formation due to 
additional water production from oxygen in the copper oxides. 
 

 µmol CO/ gram of perovskite/min 
Sample Cycle 3 Cycle 4 Cycle 5 

La0.75Sr0.25FeO3 [46] 69.58 77.15 73.09 
5% Cu/ La0.75Sr0.25FeO3 69.23 62.36 61.65 
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CHAPTER 6: ENERGY REQUIREMENTS OF THE PROCESS 
 
 

6.1 Overview 

This chapter focuses on calculating the energy required to capture CO2 from a power 

plant and converting it to CO through the RWGS-CL process using La0.75Sr0.25FeO3. Two 

potential scenarios for synthetic fuel production from CO hydrogenation, as depicted on Figure 

3.1, will be considered: (i) methanol and (ii) diesel (FTS fuel). O2 is produced from both 

scenarios, but selling this product won’t be considered for the economic calculations. 

Twice the amount of the necessary RWGS-CL packed bed reactors is envisioned to be 

used, so that a 4 port valve can be employed to provide CO2 to the reactors with the reduced 

perovskites, while simultaneously, H2 regenerates the re-oxidized perovskites, as depicted in 

Figure 6.1. This set up has the purpose of maintaining a constant conversion process. 

Additionally, preliminary economic calculations and energy requirements are also included. 

6.2 Design Parameters 

6.2.1 CO2 Source 

Florida is ranked as the 6th state with the highest CO2 emissions from fossil fuel 

combustion [197] , in 2013 it produced 218 mega tonnes of CO2 [198]. The Florida Central 

Power & Lime Power Plant, which in 2012 proposed a transition from being fueled by coal to 

being partly fueled by biomass, is one of the closest to the University of South Florida. Its 

current CO2 emissions estimate is 1.06 mega tonnes CO2/year [199] from both fuel (woody 

biomass and coal) units. This CO2 yearly production translates to 45.97 kmol CO2/min. This 
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plant is projected to generate 70 to 80 MW [199], then, 75 MW will be used for the calculations. 

Burning biomass is considered to be carbon neutral because the CO2 emitted is compared with 

the CO2 consumed by the biomass while it is growing, therefore, not much information is 

available regarding sequestration cost in biomass-based power plants. However, it has been 

previously stated, that the conversion of biomass can only contribute to lowering CO2 emissions 

if the product of its conversions is fuel synthesis, else, CO2 emissions wouldn’t decrease, they 

would just enter another CO2 exchange cycle [200, 201]. Therefore, preliminary energetic and 

economic costs will be calculated for the Power & Lime Power Plant. 

All calculations reflected in the body of this chapter are based on designing a RWGS-CL 

system that can convert 45.97 kmol CO2/min to CO in a constant process. The costs of CO2 

capture will be taken from a conference proceeding by David and Herzog [202], where it was 

determined as 7.7 ¢/kWh (levelised cost) for post combustion power plants, with an energy 

requirement of 0.317 kWh/Kg of CO2 processed (plants with highest energy requirements), using 

MEA scrubbing. Multiplying these two amounts, a capture cost of 24.41 USD/tonne of CO2 is 

obtained. 

Given the stability of the CO2 molecule, in the following calculations, the energy density 

(specific energy) will be taken as the coal energy density but with a negative sign (-25 MJ/Kg). 

6.2.2 H2 Source 

In order to keep the process renewable, H2 will be modeled as generated from 

concentrated solar power, specifically by solar towers. Solar towers have high investment costs 

but lower operation and maintenance costs than other concentrated solar technologies, molten 

salts or synthetic oils can be used as heat transfer fluids [203]. According to the International 

Renewable Energy Agency, the levelised cost of electricity generated by solar concentrators is 
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between 0.17 and 0.29 2010 USD/kWh [203]. 0.17 USD/kWh will be used as the electricity cost. 

Then, extrapolating from Turner [139] and Levene et al. [204], the cost of renewable H2 from 

electrolysis at an electricity cost of 0.17 USD/kWh is ~ 11 USD/Kg H2. The specific energy of 

H2 was taken to be 142 MJ/KgH2. 

6.2.3 RWGS-CL Reactor 

The reactor was assumed to be packed with La0.75Sr0.25FeO3. The maximum amount of 

oxygen vacancies generated during each H2 reduction (δ=0.5) was completely re-oxidized by 

CO2 upon the CO2-oxidation step. Reactions take place isothermally at 550 °C and 1 bar with 

100% selectivity towards CO. The density of the material was assumed as ρ = 660 Kg/m3, as 

experimentally determined for a similar material [205]. Investment and operation and 

maintenance costs were not considered, and the materials were assumed stable throughout the 

study. 

6.2.4 CO Hydrogenation Products 

Two possibilities will be proposed as the CO hydrogenation products. First, methanol, 

following the reaction: 

-# + 2() → -($#( 

with a specific energy of 19.7 MJ/Kg CH3OH and a minimum selling price of 6.73 USD/GGE 

[119] from H2 and CO produced from solar H2O and CO2 splitting respectively. 

And FTS fuel (diesel, C8H18) according to the reaction below: 

8	-# + 17	() → -3(43 +	8	()# 

with a specific energy of 48 MJ/Kg diesel and a reference minimum selling price of 7.01 

USD/GGE [119] from H2 and CO produced from solar H2O and CO2 splitting respectively. 
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Selectivity is assumed as 100% to the desired product at both reactions, and material 

deactivation (or down time for regeneration) was not considered. Systems are assumed to be 

isothermal and isobaric, and costs (investment and operation and maintenance) were not 

considered for either reaction. 

6.3 Results 

The results obtained from the preliminary calculations are summarized on Table 6.1. As 

part of the design parameters, both systems consume the same amount of CO2, but the combined 

RWGS-CL with FTS system consumes less water because the FTS reaction produces water, that 

can be recycles to the H2 generation system. Nonetheless, the combined FTS system requires 

more hydrogen because the reaction requires 2.125 moles of H2 per mol of CO, whereas the 

methanol combined system requires 2 moles of H2 per mol of CO. The mole balances for the 

combined FTS and methanol systems are depicted in Figure 6.2. As shown on the figure, the 

combined methanol system produces almost 100% more O2 than the combined FTS process, 

which, in both cases, could be sold to increase profits. 

The production of methanol is 99% higher (in volume) than the production of FTS fuel 

(modeled as C8H18), however, when compared by their energy content (in gallon gas equivalent, 

GGE), production of C8H18 is 14% higher, which translates to 18% more revenue from selling 

the products (Table 6.1). Due to a higher H2 consumption by the combined FTS system, it has a 

4.17% higher solar H2 cost. When Kim et al’s [119] minimum selling price for methanol (6.73 

USD/GGE) and FTS fuel (7.01 USD/GGE) are used, the economic analysis results in severe 

losses, of 43.5 billion USD (thousand millions) and 37.7 billion USD respectively. These losses 

are due to the high cost of solar H2 (11 USD/kg). Nonetheless, it is important to note, that the 

losses from the combined FTS system are smaller due to the higher energy content of C8. If the 
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cost of solar hydrogen was maintained at 11 USD/kg, the breakeven point for methanol and 

C8H18 would be 12.35 USD/GGE and 11.28 USD/GGE respectively. Otherwise, the cost of solar 

H2 would need to be 6 USD/Kg so that the prices of the products match Kim et al’s [119] 

minimum selling prices. 

In terms of energy, neither of the products matches the energy content of H2. The energy 

that could be produced from directly combusting the hydrogen that is required to synthesize both 

products is 29% and 35% higher than the energy that would be obtained from combusting 

methanol or diesel, respectively. Nonetheless, if the stability of the CO2 molecule and the energy 

required for its conversion is considered, then the process can be compared in the transformation 

of a molecule that is highly inactive to fuels. If the energy required to convert CO2 is considered, 

then the implementation of both combined processes becomes energy positive, in other words, 

the energy content of the products is higher than that of the reactants. 
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Table 6.1 Results from preliminary economic and energy assessment 
 

Parameters FTS Methanol 
Global mass balance 

CO2 input (kmol CO2/min) 45.97 45.97 
H2 needed (kmol H2/min) 143.64 137.90 
moles of product (kmol/min) 5.746 45.97 
Additional H2O (kmol H2O/min) 51.71 91.93 

Economic results 
Production (Million gal/year) 7,777.40 15,495.28 
Production (Million GGE/year) 8,837.95 7,747.64 
Sales of product (Million USD/year) a 61,954.05 52,141.60 
CO2 cost (Million USD/year) 25.95 25.95 
Solar H2 cost (Million USD/year) 99,657.10 95,670.81 
Losses= product sales – H2 cost (Million USD/year) -37,703.05 -43,529.21 
Breakeven point (USD/GGE) 11.28 12.35 

Energy 
Energy that could be produced from directly combusting 
the H2 used to synthesize the fuel (MJ/min) 40,794.09 39,162.33 

Required to convert CO2 (MJ/min) b -50,573.18 -50,573.18 
Obtained from burning fuel (MJ/min) 31,501.96 29,012.67 
Fuel – H2 – CO2 41,281.05 40,423.52 
Fuel – H2 -9,292.14 -10,149.66 
a with Kim et al. [62] minimum selling prices. 
b modeled as inverse of coal 
 

 

 
Figure 6.1 Schematic representation of the reactor configuration on the applied RWGS-CL 
process. The representation has been customized to the described power plant. 
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Figure 6.2 Mass balance scheme of the RWGS-CL combined processes. (a) with FTS and (b) 
with methanol. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 
 
 

7.1 Conclusions 

 

In the present study, the reverse water gas shift chemical looping (RWGS-CL) process 

for the conversion of CO2 to CO was developed. The incorporation of chemical looping to the 

conventional reverse water gas shift (RWGS) reaction avoided the deactivation of the catalyst 

and suppressed formation of methane, which are common drawbacks of conventional RWGS. 

The RWGS-CL process was demonstrated with (La,Sr)(Co,Fe,Cu)O3 perovskites. Bulk structure 

and redox capabilities of the samples were investigated with X-ray diffraction and temperature-

programmed experiments respectively.  

In the first study, the composition of the A-site of the perovskite was investigated. The 

goal was to design a material with a balance between stability and oxygen vacancy formation 

capabilities that allowed for a maximized CO production in a recyclable process. Temperature-

programmed studies determined that La0.75Sr0.25CoO3 exhibited the most stable structure under 

the reducing environment and the greatest CO production capacity below 850 °C. 

Amongst the temperatures tested for isothermal H2 reduction (400, 500 and 600 °C), and 

CO2 conversion (of 650, 750 and 850 °C), 500 and 850 °C were chosen for the reduction and 

oxidation temperatures respectively in a cycled RWGS-CL experiment. XRD studies after each 

step of the cycle demonstrated that after the first reduction, the La0.75Sr0.25CoO3 perovskite is 

reduced to the base oxide La2O3, SrCO3 and metallic Co. After the first CO2-oxidation, the 

reduced species were incorporated into a layered perovskite structure (La2-YSrYCoO4). Metallic 
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Co formed during each reduction was found to be the key agent in the reduction of CO2 to CO, 

due to the favored dissociative chemisorption energies of CO2 on Co. The layered perovskite 

(La2-YSrYCoO4) acted as a support possibly by keeping the reduced Co particles from 

aggregating, by enhancing CO2 adsorption, which is favored in La,Sr-based materials due to their 

slight basicity. 

Incorporation of Fe into the La0.75Sr0.25CoO3 proportionally increased the stability of the 

oxide. The La0.75Sr0.25FeO3 perovskite demonstrated capabilities for isothermal H2-reduction and 

CO2-reoxidation, therefore it was tested in five consecutive RWGS-CL cycles at 550 °C. The 

La0.75Sr0.25FeO3 was found to have high stability, maintaining the perovskite phase throughout 

the cycles, as opposed to the La0.75Sr0.25CoO3 material. Due to the enhanced stability of the Fe-

based perovskite, the H2 flow did not decomposed the material, rather generated oxygen 

vacancies that were the driving force for the CO2 bond cleavage. CO2 is a poor oxidant and was 

not able to refill all the vacancies formed during each H2-reduction step, therefore, the 

cumulative amount of oxygen vacancies increased with each cycle. In consequence, the amount 

of CO produced also increased with cycle. CO production rates from the Fe-based study were 

comparable to the ones obtained in the Co-based study, even though the latter took place 300 °C 

higher. Furthermore, the process exhibited very high selectivity towards CO. 

Cu was incorporated into the Fe-based perovskite due to its high activity in the 

conventional RWGS and on photochemical CO2 reduction. Cu addition increased the reducibility 

of the Fe-based perovskites and severely decreased CO production. The perovskites with high Cu 

content underwent a lumped reduction at low temperatures, which likely caused decomposition 

to multiple phases. The La0.75Sr0.25FeO3, La0.75Sr0.25Fe0.9Cu0.1O3 and La0.75Sr0.25Fe0.75Cu0.25O3 

were tested for their ability to convert CO2 to CO. The perovskites with copper reduced at lower 
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temperatures but were difficult to re-oxidize with CO2. On the other hand, the Fe-perovskite was 

able to re-oxidize with CO2, producing CO as expected. It was found experimentally, and 

confirmed with DFT, that the materials with very high reducibility were stable in their oxygen 

vacant state, which reduced the re-oxidation capabilities of the Cu-containing perovskites. 

7.2 Future Work 

Future work should focus on the design and subsequent test of perovskites that can form 

oxygen vacancies and convert carbon dioxide below 1000 °C and the use of less expensive and 

scarce metals. Particular attention should be given to oxides that do not require H2 to make 

oxygen vacancies, and using metals that have higher earth abundance and lower costs than rare 

earths and lanthanides.  

7.2.1 Role of Supports 

Mixing a common inexpensive support with the La0.75Sr0.25FeO3 perovskite on materials 

with higher stability could enhance CO production. A physical mixture of an oxide (such as 

SiO2) that does not typically reduce in the temperature range at which the RWGS-CL 

experiments take place, could prevent aggregation from the perovskite and could potentially 

enhance the redox properties of the composite by forming extra oxygen vacancies that could also 

re-oxidize with CO2, increasing CO production. 

7.2.2 Low Temperature Thermochemical Cycles 

The natural next step after an isothermal, low temperature RWGS-CL is to decrease the 

use of H2. In thermochemical cycles (TC), high temperatures, instead of hydrogen, are used to 

make oxygen vacancies in a metal oxide, which is then re-oxidized with CO2, producing CO. 

Materials used in TC include ceria (CeO2) [109] and other La- and Sr-based perovskites with 

manganese, aluminum and chromium on the B site [113, 206], which form oxygen vacancies at 
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T > 1000 °C. However, a computationally driven design of materials can lead to metal oxides 

with capacity of operating at lower temperatures [184, 185]. Co-based perovskites can form 

oxygen vacancies at low temperatures, without decomposition as experienced by Cu-based 

perovskites, while Fe-based perovskites have been shown to convert carbon dioxide at the lowest 

temperatures. Adding Co and Fe to these metals (Mn, Al and Cr) with higher stability would 

make a good starting point for low-temperature TC. 

7.2.3 Earth-Abundant Metals 

Copper, Iron and Cobalt are amongst the metals with highest availability and lower cost. 

But this is not the case for lanthanum and strontium. These metals were chosen because of two 

reasons. First, having two different oxidation states (La3+ and Sr2+), their combination on the A 

site induces changes in the oxidation state of the metals on the B site, which leads to enhanced 

redox properties. Second, lanthanide-based oxides are known to be slightly basic; therefore, they 

have good capacities for adsorption of the slightly acidic carbon dioxide. But an alkaline earth 

abundant metal, such as calcium, could have potential to be included on the A-site of the 

perovskite. Calcium has also shown enhanced capabilities for CO2 adsorption as CaCO3. But 

having only Ca2+ on the A-site would make necessary a combination of metals on the B-site that 

would create a balance between high stability and enhanced redox capacity.  

7.2.4 Process Energy Requirements and Potential Economic Outlook 

The preliminary calculations showed on Chapter 6 can be enhanced by including 

investment, operation and maintenance cost, and energy requirements of the RWGS-CL, FTS 

and methanol synthesis reactors. Also, within the reactors, modeling of accurate kinetic data, 

reaction rates and including products selectivity and conversions would also lead to the inclusion 

of separation units, that would yield more realistic results.  
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Appendix A Copyright Permissions 
 

A.1 Permission for Use of Material in Chapter 3 
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A.2 Permission for Use of Material in Chapter 4 
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A.3 Permission for Use of Material in Chapter 5 
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Appendix B Calculations 

B.1 X-Ray Diffraction Qualitative Analysis for Different Geometries 

Table B-1. Summary of equations. Modified from [103] 

System Axial lengths and angles Plane spacing equations 

Cubic ! = # = $, % = & = ' = 90° 1
,- =

ℎ- + 0- + 1-
!-  

Tetragonal ! = # ≠ $, % = & = ' = 90° 1
,- =

ℎ- + 0-
!- + 1-

$- 

Hexagonal ! = # ≠ $, % = & = 90°,	' = 120° 1
,- =

4
3
ℎ- + ℎ0 + 0-

!- + 1-
$- 

Orthorhombic ! ≠ # ≠ $, % = & = ' = 90° 1
,- =

ℎ-
!- +

0-
#- +

1-
$- 

Monoclinic ! ≠ # ≠ $, % = ' = 90° ≠ & 
1
,- =

1
sin- &

ℎ-
!- +

0- 	sin- &
#- + 1-

$- −
2ℎ1 cos %

!$  

Rhombohedral 
(trigonal) ! = # = $, % = & = ' ≠ 90° 1

,- =
ℎ- + 0- + 1- sin- % + 2 ℎ0 + 01 + ℎ1 cos- % − cos %

!- 1 − 3 cos- % + 2	cos= %  

Triclinic ! ≠ # ≠ $, % ≠ & ≠ ' ≠ 90° 

1
,- =

1
>- ?@@	ℎ- + ?--	0- + ?==	1- + 2	?@-	ℎ	0 + 2	?-=	0	1 + 2	?@=	ℎ	1  

	?@@ = #-$- sin- % 
	?-- = !-$- sin- & 
	?== = !-#- sin- ' 
	?@- = !#$- cos % cos & − cos '  
	?-= = !-#$ cos & cos ' − cos %  
	?@= = !#-$ cos ' cos % − cos &  
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B.2 Sample Ionization Factor Calculations 

To calculate the ionization factor of a gas on the MS with a certain carrier gas, the desired 

gas should be flowed at different flow rates with respect to the carrier until the signal is stable at 

each step. Only the desired gas and the carrier should be flowed. In this example, the desired gas 

will be CO and the carrier He. 

Ideally, the following statement is true (for each combination of flow rates): 

!"#_%&' = !')' ∗
+,_"#

+,_"# + +,_.&
 

where Sr_CO is the raw signal of m/z=28 (representative of CO), Ftot is the total volumetric flow 

rate (sccm) set on the Alicat mass flow controllers (sum of He and CO flow rates in sccm), and 

FCO_set is the flow rate (in sccm) set for CO on the Alicat mass flow controllers. 

But, because of differences in ionization of difference gases in the MS, Ionization Factors 

(IF) should be introduced into the equation to normalize the data and allow for quantitative 

analysis: 

!"#_%&' = !')' ∗
+,_"#
/!"#

+,_"#
/!"# + +,_.&

 

rearranging the equation, we get: 

!')'
!"#_%&'

= +,_.&
+,_"#

∗ 	 /!"# + 1 

which is of the form: y = b + m * x. After plotting 2343
256_783

 (in the vertical axis) vs. 9:_;89:_56
 (in the 

horizontal axis), and setting the intercept to 1, the pendent is the IF. It is important to note that at 

least 3 points (not counting 0 sccm for the desired gas) should be taken, and the total flow rate 

should remain constant. 
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When using a water bubbler, the Antoine equation is used: 

<=>?@ A = B − D
(F + G) 

using the A, B and C values corresponding to the temperature of the bubbler, we rearrange the 

equation to calculate P. Next, the partial pressure of water is calculated by dividing P by 760 mm 

Hg as follows: 

A.I# =
A	(JK=L	BMN=OMP	PQ)

760	LLU>  

Then, the partial pressure of water is multiplied by the He flow (in sccm) that was passed 

through the bubbler, resulting on the equivalent to the Flow set of water vapor, as following: 

!%&'_.I# = A.I# ∗ !%&';8_34_VWVVX8: 

Next, the calculations described on the previous section can be performed by substituting !%&'_"# 

by !%&'_.I#. 
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B.3 Procedure for Mass Spectrometry Qualitative Analysis 

1) Determine the offset of desired masses. During the period of the experiment where 

only He is flowing, an average value of mass 28 (and other masses of interest) can be quantified 

and subtracted from all the values of mass 28, that way, we are minimizing the contribution of 

N2 (from air) to mass 28. 

2) Determine contribution of certain gases to other masses of interest. For example, 

determine CO2 contribution to mass 28. After the experiment is over, but before turning off the 

filaments in the MS, CO2 and He were flowed, and the data obtained from this period was used 

to quantify the contribution of CO2 to mass 28 (mass 28 is the m/z used for CO calculations). 

3) Divide by IF: Divide the signals of the masses of interest (in the case of this 

dissertation: CO2 (m/z=44), CO (m/z=28), H2O (m/z=18) and H2 (m/z=2) by their respective 

ionization factors). 

4) Divide by sum of all masses: Add all the signals (divided by IFs), including He, and 

divide each mass of interest by the sum of all the signals. 

5) Calculate trapezoidal area: Use a numerical integration method to integrate the area 

under the curve of the masses of interest.  

6) Use ideal gas equation of state to calculate moles of products and reactants: Multiply 

the area obtained by the total volumetric flow rate (usually 50 sccm) and use the ideal gas 

equation to calculate the moles/min out of the reactor for each gas. When this value is multiplied 

by the amount of time in which the reaction took place, the total moles produced (or moles out) 

of each gas are obtained.  
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B.4 Data Used in Calculations on Chapter 6 

Table B-4 Constants used in the calculations. Properties of the materials, conversion factors and 
energy specificities. 
 

Densities and molar masses 
CO2 44.01 g/mol 
CO2 1.98 kg/m3 
La0.75S0.25FeO3 229.93 g/mol 
La0.75S0.25CoO3 660.00 kg/m3 
H2 2.00 g/mol 
CO 28.00 g/mol 
H2O 18.00 g/mol 
C8H18 114.22 g/mol 
C8H18 703.00 kg/m3 
CH3OH 32.04 g/mol 
CH3OH 791.80 kg/m3 

Conversion factors 
1 car 7.00 m3 
football field 5363.60 m2 
1 ton 0.91 tonne 
H2 cost (solar) 11.00 $/kg 
1 Mega tonne 1,000,000 tonne 
1 Giga tonne 1,000 Mega tonne  
1 m3 264.17 gal 
C8H18 1 gal is 0.88 GGE (gallon gas equivalent) 
CH3OH 1 gal is 2 GGE (gallon gas equivalent) 

Energy specificity (energy density per mass) 
H2 142 MJ/kg 
C8H18 48 MJ/kg 
CH3OH 19.7 MJ/kg 

 

 


	University of South Florida
	Scholar Commons
	3-29-2016

	Closing a Synthetic Carbon Cycle: Carbon Dioxide Conversion to Carbon Monoxide for Liquid Fuels Synthesis
	Yolanda Andreina Daza
	Scholar Commons Citation


	Microsoft Word - 16-03-29 dissertation yad -checking with catherine b.docx

